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ABSTRACT

In this network synthesis problem a matrix giving flow
requirements between each pair of points is specified, and
the cost of flow in each arc is a concave function of the

amount of flow. A flow pattern which fulfills the require-
ments at minimum cost is sought. This problem is formulated
as a concave programming problem with linear constraints.
All the practical difficulties of formulation and theoretical
difficulties of identifying the globally minimal solution
while avoiding locally minimal solutions are discussed.

Three procedures are developed. The first procedure is
inefficient. The second procedure is quite efficient but
produces locally minimal solutions. Therefore different
heuristics and sequential sampling plans are suggested to
obtain the globally minimal solution (or estimate it) from a
number of locally minimal solutions. The third procedure is
a global search procedure of branch and bound type where each
subproblem is easy to solve. This procedure has limitations
because computer core size requirement grows very rapidly
with the size of the network. Different ways of
circumventing this limitation are discussed. Finally, a
post optimization procedure that approximates the solution
of nonconcave problems with cost specified by step functions
defined only at integral points is discussed. In conclusion,
a more general problem and future research directions are
mentioned.



CHAPTER 1

1.1 Introduction

This thesis studies the techniques of planning a communication

network. It is a synthesis problem; the required number of channels

connecting each source-sink pair is specified and the layout of the

channels of communication must be determined. The problem is sometimes

known as the "TELPAK" problem which referc. to packing more channels

together to take advantage of economies of scale.

This synthesis problem arises most often in two situations. The first

is in planning an intercity network such that the cost incurred is

minimum given an estimate of the traffic between cities. The traffic

volume data are used in C.C.S. calculations to determine the number of

channels required between cities for a certain prespecified probability of

blocking and certain assumptioi' s about the alternate routing procedure.

The second is in determining the most economical way of leasing, from a

telephone company, trunk groups between the offices of a corporation given

an estimate of the traffic volume between the offices and taking advantage

of high volume discounts.

In both the above cases, the planning problem would be fairly simple,

as we explain later in this chapter, if the cost per channel were constant

or increasing with the number of channels. But in this case, we face a

situation where improved technology can be used when the number of channels

increases. Cost per channel decreases with increasing capacity. This

trend is evident in the past developments (open wire, N2 carrier, microwave

radi,1, analog transmission over coaxial cable) and is expected to continue

in the foreseeable future (waveguides).

IC.C.S. means hundred call second which is a unit used in measuring traffic

In a telephone network.
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When the cost per channel is a decreasing function, we have a

"concave type" (explained in the note on Page 8) function as the total

cost objective function which has :o be minimized. A small example of

such a problem should be useful. Assume that a single telephone line

costs one dollar per mile, but if we build one hundred lines LcLween two

points, the cost is 75 dollars per mile. If we build two hundred lines

between two cities, it costs, say, 120 dollars per mile. Because the

cost is concave type, it is cheaper to pack the Jines into major routes

than to build all telephone lines directly. To illustrate the problem,

suppose that we have six locations A , B , C , D , E , and F as shown

in Figure 2. The numbers in Figure 2 are the mileages between tue points.

Let there be 50 telephone lines required between points A and C , and

also between points B and D . No lines are required between any other

pair of points. The total cost of building a direct line between A and

C and also between B and D is

2 x (20 x 1 x 50) = 2,000 dollars.

If we do not build direct lincs between B and D but build the

50 lines by way of A and C , then the total number of lines to be

built between A and C is 100, and the cheaper rate is available. Thus,

the total cost is

2 x 4 x 1 x 50 + 100 x .75 x 20 = 1,900 dollars.

If we do not build direct lines between either A and C or

between B and D but build 50 lines between A and E , B and E

C and F , D and F , and also 100 lines between E and F , then the

total cost is
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4 x 2.8 x 1 x 50 + 100 x .75 x 16 = 1,760 dollars.

So, the natural question is: what is the cheapest network that

satisfies all the requirements. In the above example, the third type is

the cheapest so far obtained and to get that we had to enumerate the

cost of the direct routing and the cost of using other possible inter-

mediate nodes. This enumeration becomes difficult as the number of

sources and sinks increases or as the total number of nodes increases,

and becomes almost impossible when the network configuration gets more

and more complex. An attempt is made in this thesis to develop a

systematic procedure for solving moderate-sized problems of this type.

1.2 Difficulties Faced in Solving the Problem

The difficulties encountered in this problem can be roughly divided

into two categories. The first type of difficulty arif,,es in building

(from a real world communication network situation) a nntwork model which

can be analyzed. This will be illustrated with the network description

that follows but not discussed further in this thesis. The second type

of difficulty arises in the analysis of this problem. Because of a

certain mathematical subtlety involved in this problem, a theoretically

elegant solution procedure appears difficult to find, if one exists at

all. This mathematical difficulty will be described at the end of this

section to justify the use of a heuristic solution method in Chapter 3

and an elaborate enumerative solution method in Chapter 4.

1.2.1 Network Des cr. l._on an(d Practical Difficult ies

Telephone calls are geicrat,,d by the Individual subh;cri cr. The

subscriber's demands on the network can occur whenever he ch-o-..-;, can be

of any duration, and can he directed to any other subscriber. Calls may



b rcuted on one or nore of three overlapping networks. .7,e network

cc-necting each subscriber to a central switching of' ce is called the

local network. The network connecting central offices within an area of

one or more states is called the statewide network. The network wlhich

connects the main cities is called the long-haul network. These three

classes of networks cover the country. The synthesis methods developed

in this thesis are applicable mainly to the long-haul network and stpte-

wide networks. In the case of statewide networks, the main stations are

the nodal points of the system. In the case of the long-haul neLwork,

cities are the nodal points of the system.

To calculate the rumber of channels required between nodal points, a

projection is first made about traffic demand between two points. It is

very difficult to project these traffic demands ahead of time. Demand

can be affected by a change in rate structure!;, new service offerings, or

conditions imposed by regulatory agencies. Moreover, new and unexpected

technologies may significantly change the demand, as, for example, a

communication satellite which could stimulate long distance calling and

on-the-spot T.V. coverage, or an improved time sharing computer system

which could increase data transmission through co.Ununication cables. How-

ever, despite all these uncertainties, projcctions are made for traffic

requirements and these uncertainties are taken into account. Once traffic

projections are made, the C.C.q. calculaticn- -re used to find the number

of channels required for a certain probability of blocking. Usually, the

blocking probability is .01 and standard traffic engineering practices are

available for such calculations.

At this point, two complexities whidi enter Into trunk requirercnt

calculations must be taken Into account. The first is the alternate

routing plan. The alternate route is thc pat'i offered to a call if the
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most direct path is blocked. Alternate routes are always specified. If

an alternate route from point A to point B goes through point C

then this fact must be taken into account in determining trunk require-

ments between points A and C , and between points B and C . The
2

second complexity is what is known as diversity routing. The trunks

between two points are split into two or more physically different path7

for better transmission reliability. That is, two points should not be

completely disconnected if a part of the network is destroyed by a natural

catastrophe or for any other reason. This is similar to alternate routing

requirements. The above discussions show how difficult it is for a planner

to say exactly how nany channels are needed between each pair of points.

However, for our synthesis problem, we shall assume that this figure has

been determined.

Cost Estimation

There is, however, another set of difficulties, even given the

knowledge of these channel requirements. Each traffic gererating and

terminating point, and all traffic handling points, are defined as nodes,

and the links or connecting arcs between two nodes are transmission

facilities. The graph is undirected because telephone conversations go

both ways. Several facilities may comprise a link. This type of mapping

by means of nodes and arcs is not always simple--a lot of judgemental

factors are involved in deciding these nodes and arcs. For instance, at

certain nodes some transmission lines pass directly through and some go

via a switching machrine. In this situation, the cost is different for the

2See "The Design of Minimum Cost Survival Networks," K. Steiglitz,
P. Weiner, D. J. Kieitman, Technical Memorandum TM-105, National Resource
Analysis Center, System Evaluation Division. This paper gives a
heuristic treatment.
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Last, but not the least, of the first category of difficulties is

determining the cost functions which relate cost to the number of channels.

Cost is the main objective in our design considerations. But cost to

whom, company or subscriber? And how much is the cost incurred? These

are natural questions which arise when we are talking about cost. In the

TELPAK problem where interoffice facilities for a large corporation are

consid red, the cost referred to is cost to the customer, and it could be

different from the actual Lost incurred by the telephone company. But in

other cases cost refers to the cost incurred by the telephone company. In

both situations, an element of uncertainty is involved in these costs. It

is affected by the interest rate, available funds and the production cost

of facilities and designs.

The possible kinds of cost functions encountered in practice in this

problem are illustrated in Figures 1.3, 1.4, 1.5, 1.6, and they all have

one thing in common--economy of scale. All the cost functions ýre what we

3
will call "concave type" and they are nondecreasing functioirof flow value.

3That is, they are not necessarily concave because concave f,,nctions are
contintious everywhere except at the end points and the foll.)wing functions
may not have that continuity property. Also, concave functions satisfy
.f(1 (1 - ))f(x 2 ) f(tx 1 + (1 - Ox 0 X <_ I , which only the

tliird ;uid fourth (if our functions satisfies (assoming A be such that
(AX + (I - A)X,)) is a point at which I i:: defined).

S 1I I I I I '
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steps of decreasing size occur due to the same reason as above. Here a

variable cost is incurred in transitional capacity levels of different

facilities, i.e., a facility can be overloaded at some additional cost per

channel.

o .

0

CO
'4j

0

Number of Channels--

FIGURE 1.5

Piecewise linear concave function--here each part is linear but the

slope decreases with increasing flow value. Here a variable cost is

incurred for each additional channel but this variable cost depends on the

range it is in.

0*

Number of (:haiinels -_

FIGUR1%E* 1.6
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the total cost of n channels then f(n + 1) - f(n) - f(n + 2) - f(ri + 1) >

... > 0 . Here total cost increases with the addition of each channel,

but cost per channel decreases. This is strictly a concave function of

discrete type. In cases where only approximate cost data is available and

some guess work is involved in getting the cost values, such functions are

used.

This concludes our discussion of the practical difficulties which

arise in the problem formulation stage. We assume that these difficulties

can be surmounted and that the cost function, like the channel require-

ments, is available to the network synthesizer.

Discrete vs. Continuous Values

The cost data diScussed above is dis;cret e, i.0., V L1utcS arc, ,r1ly

available for integral points. For the purpIac Of me 1Ihbd0s us(;(,d in

Chapters 3 and 4, we will empl]uy a cent intIIIOUS concave rcpres,•e'at ion of

the data, obtained by using a continuous curve through the discrete

points. However, such concave curves cannot be drawn through the discrete

points for Figures 1.3 and 1.4. Hence, some approximation is necessary.

Use of such a continuous concave vc-rsion is justified (except Figorcs 1.3

and 1.4) because the answer we get is always integral (aLs shown in

Appendix C), and the values of the data at thobe points muatch thli

or igi n;4 1 0at a. For Figures -1.3 and 1.4, ;or',e post opt iniza tion procedure

is needed. Except in Chiapt r [5, we will always be con, ctrued witih

cont inuloluLs viahib:; and ('OnIiuav funct( io ;. Anotltr al I! i•, lt iv, w.ay of

joining Ihe, di!,C-rct, poi iInI! i:, ly \1 i , tc.ti% .i! I i Ir k.ci I I . . a|Iht t I . I, II ihm

described in ChIp . t c" 3 is .ipp (lic l 1 c to !,11(i) itirves . W; WWi illy ilii ,i

modifications, as mentioned in tllat chapter.



12

1.2.2 Theoretical Difficulties

We are now in a position to discuss the second type of difficulties,

those which arise in the analysis of the problem. Here we will consider a

network with N nodes and M arcs (M can be different from N(N -2)
2

because some a: ýs between nodes are not possible) joining the nodes

through which calls are channeled. The requirement matrix R = {r ij} is

specified where r . = number of channels required between node i and

j . Also the function f M(ym ) is given for all M arcs. This function

gives the cost of ym channels (amount of flow, in network terminology)

in arc m of the network. With all this information, we can set up the

above problem as a programming problem.

In the discussion that follows, the concept of extreme pointsof a set

is very important.

Definitions:

A convex combination of two points X and X2 in a vector space is

a point X given by X = {XX1 + (1 - X)X 2 where X is a scalar and

An extreme point X of a set is a point in the set such that there

exist no two distinct points X1 and X2 in the set and 1 > X > 0 such

that the point X is a convex combination of X1 and X2 .

Extreme flow is similarly defined as a feasible flow which cannot be

expressed as a convex combination of two other distinctly different

feasible flows.

In the arc-chain formulation that follows, two types of vector spaces,

X and Y , are used. The X-space is dcfined as "chain spa-e" and each of

its element x k indicate the amount of flow In the kth chain between
tsourcemand s ijn

source and sink pair i J . The Y-space is defined as "arc-space" and
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each of its elements {y,) indicates the amount of flow in arc mB'o

Y-space is a linear transform of X-space by means of arc-chain incidence

matrices A defined below.

Arc-Chain Formulation

Pij = Number of different loopless chains between node i and j

k
Pij = The set of loopless chains connecting node i and j , where

k = 1,2, ... , Pij

X - A vector of dimension Pij where element x k represents
k k

x j amount of flow between i and j through chain Pj

A ij = M x Pij arc-chain incidence matrix, whose (m,k) element is

k
1 if the chain p.. traverses arc m , or 0 if it does not.

'Y A. .X... = 1- vector Tym) which is the total flow Jr tjhe

i,j gi>.j m

arc m

So, here we have to minimize the cost Z , i.e.,

M

(l.]a) Minimize Z = f f (y )

subject to the constraints

P..

(1.1b) x.. > r. . for all source and sink pairs i jk=l xj -- ]

k

(.) k > 0 for all k and ;all source and sink pairs i J

The linear n..eual Iitic'; (0. 1b) and (1. Ic) define a polyhIcdrotn 1i

X-space. Since Y-space Is; a linear tran.form of X-space, the above
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polyhedron can be transformed into another polyhedron in Y-space. The

objective function Z is the positive sum of concave functions of

elements ym of the vector Y . So, it is a concave function in Y-

space.

Z(Y) - i definAition (X) where i(X) is the

objective function in X-space.

Z(X) is a concave function in X-space as evident from the following

inequality. Consider any two points X , X , in X-space and a scalar

A such that 0 < A < 1 . Y and Y2 are defined as the images of X1
211 y22

and X2 in Y-space, i.e., Y = I A X 1 and Y = I A. X
i,j~oi>j j ii,j.:i>j jj

(xx 1 + (1 - X)X2 ) =z Au XIj + (1 - X)x ) by above definition
,'j 3i>J j i j)

because A is a scalar :,nd A ijs are matrices.

= Z I A. X1  + (l - X) A AX2

i,j4i>j ii ji i,j4i>j

Z(XY1 + (I -)y2) by definition

> XZ(Y ) + (1 - X)Z(Y 2) because Z(Y) is concave

in Y-space

- AZ I A iX\ + (1 - X)z byAijX2 b
I i>j i> ij A)(ij A4>j 2

definition

= )Z(X1) + (1 - X)'Z(X 2) by definition

The following lemma is useful in determining extreme points of the

polyhedral set in X-spacc.

Lemma I.I:

A point is an extreme point of the polyhedral set in X-space if and /
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only if it corresponds to a solution with a single flow-chain between each

source-sink pair.

Proof:

Suppose there are n source-sink pairs with r j > 0 Then there

are n-equations of the forra (i.1b).

Any basic feasible solution of the convex polyhedron defined by

equations (l.]b) and (l.1c) can have at most n nonnegative variables

(because there are n-equations of the form (l.lb)). No vari,:ble app-.ars

in Prore than one equation of the set (i.lb) and all the n-equations have

to be satisfied. So, any feasible solution must have at least n-positive

variables. Thus, every basic feasible solution has exactly n-positive

variables, one for each source-sink pair. This establishes that any basic

feasible solution corresponds to a single flow-chain between each source-

sink pair.

If there is a single chain between each source-sink pair, then only

one variable for each equation (l.lb) is positive and each of these

positive variables are different from the other. So, they form an

independent feasible set. Thus, they are a basic feasible solution.

So, a solution is a basic feasible solution if and only if it

corresponds to the solution with a 'inglc flow-chain betwen each source-

sink pair. A solution is an extreme point if and only if it is a basic

feasible solution (Page 100, Reference H-I). Hence, a point is an

extreme point of the polyhedral set if and only if it corresponds to a

solution with a single flow-chain between each source-sink pair. H

In this problem, a concave funct ion has Lt lbe niitni,,icd o'ver .1

convex polyhedral sel. The fllwi ,'8 lemmai i an tijllly rctit-ce:; the,

number of point s to be a,11-C01*0ld ini antiy d i v t ('ittinlicrat I pit o(cchiI rc
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Lemma 1.2:

The minimum of a concave function on the convex polyhedral set D

if it exists, is attained by at least one of the extreme points (vertices).

Proof:

Since the set is a polyhedral set, any point Y in the set can be

expressed as a convex combination of its extreme points YI, .... Ym
m

Suppose the minimum is attained at Y where Yo= a ciYi and
i=l1

ai 1 a, 0 V i Since Y is the minimum point,

f(Yo) < f(Y) for any Y c D
0

m m
but f(Yo) = f( cii >_ cif(Yi) because f(Y) is a concave

function.

Let f(Y) = Min f(Y) . So,
S i i

m m
f(Yo) > ) aif(Yi) > a cif(Y) (since ac > 0)

0 i

=f(Y) (ince 2a,

Since Ys c D , f(Yo) = f(Ys) • Thus, the extreme point Y must

also be a minimum point.j I

So, a direct method of finding the minimum of the concave function in

a polyhedral set is to enumerate all the extreme points and evaluate the

function at all these extreme points to determine the minimum. But this
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is not a very practical method because the number of extreme points in the

polyhedra defined by (l.lb) and (1.lc) is very large and grows very

rapidly with an increase in the number of arcs and source-sink pairs.

From the Lemma 1.2, the minimum is attained at one of the extreme points

in Y-space. However, the extreme poinLs in Y-space arc very difficu]t to

determine. And it is easy to determine an extreme point in X-space by

using a single chain for each source and sink pair (from Lemma 1.1).

Therefore, it is useful to determine the relationship between extreme

points in Y-space and extreme points in X-space, which is done in

Lemma 1.3.

The image of a point P of X-space in Y-space is the point in Y-

space which is obtained by transforming the coordinates of the point P

by using the matrices A...

The following small example reveals that more than one r:int in

X-space can have the same image in Y-space, and it also shows that the

image of an extreme point in X-space can be n nonextreme point in

Y-space.

FIGURE 1.7

Examp e:

The required flows are r 1 7 = 2 and r26 ' 2 . Let

T /357 13457 2^456 235 yT1 x7 ,17 ,26 1x6 nd =(1,23'Y34,35,Y4,5,Y56,Y57)

S... . . ..... .. I'I iimi. . iii i~i=i l , • i~4
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T

The vector Y1 ' where Y = (2,2,2,2,2,2,2) , is the image of both AI

TT
and X2 , where X = (2,0,2,0) and X = (0,2,0,2) Both in X and

X2 there is a single path between each source and sink pair, so they are

extreme points. However, Y is a convex combination of two feasible

points Y = (2,2,4,0,4,2,2) and Y = (2,2,0,4,0,2,2) , since
1 1

Y= Y + Y " So, Y is not an extreme point.
211 2 12 1

Lemma 1.3:

For a point to be an extreme point of the polyhedron in the Y-space,

it is necessary, but not sufficient, that it be the image of an extreme

point of the polyhedron in X-space.

Proof:

Suppose the lemma is not true, and that- there exists Y which is an

extreme point of the polyhedron in Y-space and it is an image of X e

polyhedron in X-space, which is not an extreme point (i.e., Y is the

image of nonextreme point in X-space). So, X = a X where
ii

a i= 1, a > 0 V i ,and at least two a. 's are nonzero, and Xi's

i -- i

are extreme pointof the polyhedron in X-space. Let the image of X I n

Y-space by Y . Since X to Y is linear translation, Y = Y
i

Now if all Y1 's are not equal, then by definition Y is not an extreme

point, a contradiction. However, if they are all the same, then Y is

also image of X which is an extreme point in X-space. So, the necessary

part is valid. The above example shows that it Is not sufficient.,I

The above discussion shows that if we seirch all the extreme points

in X-spnce we cover all the extreme points In Y-space. Since some extreme

poltits in X-space may correspond to nonextren,,! pollits Il Y-space, this
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search procedure may involve some unnecessary work, but the ease of

generating extreme points in chain space justifies the emphasis on X-

space in the subsequent algorithms.

Another major difficulty arises in pursuing a solution to the above

problem due to the fact that the problem has quite a few local minimum

points which are not necessarily global minimum points.

Definition:

By a local minimum of Z(Y) on D (where Y E Rn) , we shall mean

a vector Y c D for which there exists a positive scalar E and a

corresponding f-neighborhood N(Y,E) = {Y c Rn : 11Y- _ I < 0} , such

that Z(Y) < Z(Y) for all Y c D ( N(Y,O) If the latter inequality

holds for all Y E D , then Y is called the global minimum of Z in D

So, any gradient search method which looks for an improvement of the

objective function in an E-neighborhood might result in i local minimum

point (one such method is discussed in Chapter 3). The most difficult

aspect of this is the identificacion of the globally minimum point when it

is obtained. Considerable search in this direction convinces the author

that there is no general. method available which identifies a global

optimal point for such optimization problcms, though such identification

in some special cases may be possible, as will be discussed in Chapter 2.

Though there is only one co~nmodity, telephone calls, the problem must

be treated as a multi-comnmodity problem because calls are (list iuguishl(d by

their starting and ending points, and we assume that there arL many

different pairs of starting and ending points specilied. So, tht.

difficulties of multi.-commodity flow problems also arise here.

If (as in the synthesis problem we are studyin.g) there is no

capacity restriction and if (as is not the case in our problem) the cost

is a linear function of the flow, then the solution can be easily obtained
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by Floyd's shortest path procedure. Here the linear cost coefficients are

used as the lengths of the arcs and the entire flow between each source-

sink pair is passed through the shortest path between them. In most linear

cost problems, however, there is a capacity constraint. In such cases, a

very efficient algorithm exists only for the case of 2 source-sink

pairs [H-31. For more than two pairs, a certain large scale programming

method using a column generation technique is useful. This linear cost

method can be extended successfully to convex cost functions because each

arc can be split into a number of arcs, which transforms the problem into

a linear cost problem with an enlarged number of arcs. For instance, the

convex cost on an arc in the Figure 1.8 con be approximated by 3 arcs

having linear cost coefficient a1 , a2 , a 3 , and capacity c1 , cz , 3

respectively.

"" ~aa

aSa~2
0

4 c c1 -,- F- c Flow--

FTGURE 1 .8

-rn-mm-
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Here the proper order of choice of arcs is guaranteed (i.e.,
arc (a 1 ,C 1 ) (cost coefficient aI and capacity cI) is completely filled

before (a 2 ,c 2 ) is used and when (a 2 ,c 2 ) is filled (a 3 ,c 3 ) is used)

because the cost coefficient increases with flow value. However, for

concave cost, the cost coefficient decreases with the flow value so the

proper order will not be maintained. Hence, such simplification is not

possible and no procedure of finding the global optimal point, which does

not involve the risk of total enumeration, is available. The methods

proposed in succeeding chapters are local search, and branch and bound

(here, in the worst possible case, total enumeration may take place)

procedures.
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CHAPTER 2

The last chapter exposed the practical and theoretical difficulties

involved in seeking a solution procedure for the problem considered in

this thesis. Before discussing the specific solution procedures in

succeeding chapters, we will survey in this chapter the available results.

The relevant areas of research which must be covered are multi-commodity

flow problems and concave cost minimization problems. We will survey

the important results in these two fields, and we will discuss a simple

variation of this problem which is relatively easy to solve.

The pioneering work in multi-commodity flow problems was done by, among

others, L. R. Ford, D. R. Fulkerson, T. C. Hu, R. E. Gomory and

J. A. Tomlin

Ford and Fulkerson [F-4] initiated the analysis of the maximum

flow problem where there is more than one source and sink pair. They showed

that if the flows are from a set of sources to a set of sinks, then the

maximum sum of flows between the two sets can be obtained by solving a

maximum flow problem between a super source and a super sink in an

augmented network, where there are extra ;ircs of infinite capacity from

the super source to the set of all source.; and from the set of all sinks

to the super sink. They also indicated [F-3] a solution procedure for

the more general pLoblem discussed below, gave the formulation shown in

equations (2.2a, b, c) and indicated the solution method discussed there.

The more general multi-terminal., multi-commodity, maximum flow

problem for a capacitated network was formuulated by Hu and Gomory IG-4]

as follows. Let there be sources N and sinks N ,(s 1 1, ... , q,
S 5

s=',..., q') where flow s is from N to Ns, Let x be the
5 ij

iThe names of R. T. Chien [C-2] and W. Maved.1 [M-1] also should be mentioned
in this connection. But for various reabons I will not be discussing their
work.
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flow s in the arc ij , and f(s,s') be the value of the flow s from

N to N , The first type of problem is to

(2.la) Maximize f(s,s')

s=l

-f(s,s') if j s

(2.1b) Subject to is i - if j # s,

f(ss') if j s'

(2.1c) I x I <_ bi. (for all i,j)
_ ij iJ

S

(2.1d) xij > 0 (for all s,i,j)

Unlike the one commodity max-flow problem, the constraint matrix here
2

is not unimodular, so an integral solution is not guaranteed. Hu [H-3]

solved a special case of the above problem, the case of two commodities

in an undirected network where capacities b.. are even integers by
1]

using his max bi-flows min-cut theorem. His solution procedure involves

the following steps. First the labelling algorithm is used to find max-flow

of the 1st commodity. Then a cycle of flow ef the Ist commodity Is

determined in such a way that by introducing some flow in the cycle, the

flow values in certain arcs are decreased, so that a flow augmenting chain

of the 2nd commodity is obtained to introduce the 2nd flow at the maximal

possible level without changing the flow value of the 1st commodity.

Rothschild and Whinston [R-4] have extended this two commodities flow result

.3
for a pseudo-symmetric network. The linear programming solution of the

2A matrix is unimodular if all the subdeterminants of the matrix have values
0 or 1. It has been shown (p. 125, [H-3]) that with unimodular matrix D
and integral vector b , the convex polyhedron DX > b has all integral
extreme points, and also if all the extreme points are integral and b Is
integral vector then D is unimdular.

3 Definition: A network is Pstiedo-iymmetric If it has All even nodes
(a node i is even if • bij is an even integer).
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max-flow problem in the multi-coimnodity case is also studied by Gomory

and Hu [G-3]. Here the arc-chain formulation is used. Consider an M

arc network with capacities bl, ... , bM ' A chain in the network can be

represented by an M vector with 1 in a component if the arc is used,

and 0 if the arc is not used in the chain. Let us define an arc chain

incidence m-trix A = [aij] as follows

1 if the arc i is in the chain j
a ij

0 otherwise

If x. "i-s the amount of flow in chain j , the multi-commodity max-flowJ

problem is given by

(2.2a) Maximize • x.j 3

(2.2b) Subject to a ax. < b. (i = l, ... , M)
j j- i

(2.2c) x. > 0
3 -

where b. is the capacity of arc i1

The matrix [aija has a very large number or columns (defined as a.)13 '

one column for each possible chain for each coimodity. Any basis has only

M columns and at each step one has to considcer one additional column a.s

a candidate for the basis. So at any time we need to consider only a

(M + 1) x (M + 1) matrix. Suppose we have M columns to start the

algorithm and get the dual p1ice vector r = (Tr' ... , I T) where each
1' M

1. corresponds to a specific row. Notice that c. = I for all j here.

The relative cost vector of every noubasic column a. is given by

c. 1 - ra. If all c, < 0 then the plselnt 1a;sis is opi imnl . If
J J

sOmuc c. > 0 wc. need to bring that co]tmin into, the hbiris. All of thic
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it i's can be made nonnegative by introducing into the basis columns

corresponding to slack variables in rows with negative 7.'s . Then the1

problem of determining which nonbasic column to bring into the basis is

simply solved by the column generation scheme as follows. Use 1ii as the

length of arc i and find the shortest chain (a.) connecting any

source-sink pair. If all ira > I , stop since all. c. < 0 and we have
S= J

the optimal solution. If not, bring column a. into the basis.J

Hu and Gomory also considered the feasibility problem where certain

flow requirements have to be satisfied, which is very similar to the previous

problem. Sometimes the problem .-I feasibility is coupled with the

necessity to minimize the cost of building the capacity. If ci is the

cost of building a unit capacity in arc i , we would like to minimize

Sc.b.. This problem is discussed in more detail by Tomlin. The most
I

general case of the above problem, which }lu solved, is the case in which

requirements vary over different time periods. Here a set of requirements

has to be satisfied for each of T periods. The objective is to minimize

the cost of building a sufficient capacity. An example of multi-commodity

minimum cost flow problem with time varying requirements is solved in

Hu's book [H-3].

Tomlin tT-l] has formulated explicitly the problem of finding minimum

cost flow in a capacitated network which satisfies certain flow requirements

for a directed network using both node-arc and arc-chain matrices-, and for

an undirected network using only the arc-chain matrix. iii both formtulations

he obtains a large scale linvar program having a special structure for the

constraint matrix so that the Dantzig-Wolfe decomposition principle can be

applied. After an application of the decomposition principle, a subproblem

(finding the shortest route problem between two terminals) must be solved

in order to generate columns. Many efficient algorithms can be applied to
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solve these subproblems because, with proper manipulations, we can

restrict these problems so that they have only nonnegative arc cost

(shortest route problems with all nonnegative entries in distance Latrix

are easy to solve).

More recently, Richard C. Grinold [G-5] has indicated a polyhedral

game approach (similar to Kornai and Liptak [K-3]) to the multi-commodity

max-flow problem in a directed network. The solution procedure involves

allocating flow capacity to the various commodities, solving a one-

commodity max-flow problem for each commodity and a very trivial linear

program at each step. The method is easy to code and involves simple

computation but is recommended only for suboptimization because of its

poor convergence property. He also indicated an extension of this

procedure for the multi-commodity min-cost flow problem, but with the

restriction that in order to make the problem feasible for certain

allocations of flow capacity we need to introduce high cost by-pass arcs,

parallel to the original arcs, which can effectively double the problem

size.

So most of the work in multi-commodity flow is restricted to max-flow

or to linear cost cases involving a capacitated network. The problem

considered in this thesis has no capacity restrictions - so a major set

of constraints is avoided, thus making the problem comparatively easier

to tackle. However, the nonlinearity of cost structure, particularly

concave cost, introduces substantial difficulties. A look at the litcrature

on the concave cost minimization problem is appropriate at this point.

Philip B. Zwart [Z-3] has made an interesting observation for a

class of nonconvex programming problems of the form:

Minimize F(X)

Subject to Ci( Cx) < 0
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where F(X),G i(X)'s are not necessarily convex functions. If X is a

local minimum and A,'s are the corresponding lagrange multipliers for

the problem, then, if the modified objective function F(X) + I •iG i(X)

becomes a convex function, X is also a global minimum for the problem.

By this one can sometimes recognize when a local minimum point is a

global minimum point. Unfortunately, if we do not have convexity then

we cannot tell whether the point is local or global minimum.

Willard 1. Zangwill [Z-1] has considered a special type of flow

problem in which the cost of flow in any arc is a concave function of

the amount of flow. This special type is when there is a single source

and a number of sinks or a single sink and a number of sources. He defined

the concept of extreme flow as one which is not a convex combination of

two other flows. The extreme flow corresponds to the extreme point of the

convex polyhedron generated by flow conservation conditions in node-arc

or arc-chain space. He characterized the extreme points in such problems

and showed that extreme flow corresponds to arborescence flow in multi-sink

single source or multi-source single sink problems. Based on this

observation he developed a dynamic programming algorithm to solve such

problems. Consider a network with source node I and sinks a and b,

where b = a + 1 . A flow from node 1 of ra units to a and r b units

to b is required at minimum cost. We know in arborescence flow that

som acs il hae a+ r b flow, some will have r aflow, and some

will have r b flow. Furthermore we know that if the flow r + r b is

separated at a node into r aon one arc and r b on another, the flow

will never be r a + r b on any subsequent arc. Define Ve0(a) to be the

minimum cost of shipping r aunits from node e to node a ,V e(b) to

be the minimum cost of shipping r b units from -iode e to node b , and
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V (a,b) be the minimum cost of shipping r units from e to a ande a

rb units from e to b . To insure that no material is shipped from

b to node a , define Vb(a) and Vb(a,b) as very large numbers. A(e)

is defined to be all nodes reachable from node e using the existing arcs

of the network. C.. (x) represents the cost of x amount of flow in13

arc (i,j) , a specified function. Then the recursive relations are:

Ve(a) = Min {C (ra) + Vf(a)) for all e a , b,
e feA(e) ef a f

Ve (b) = Min {Cef(rb) + Vf(b)) for all e 0 b
feA(e)

Ve(a,b) = Min {C ef(ra + rb) + Vf(a,b),
f,gcA(e)

Cef(ra) + Vf(a) + Ceg(rb) + Vg(b)) for all e 0 a , b

where V (a) = Vb(b) = 0 , and V (a,b) = V (b) .a ba a

These relations are solved recursively until Vl(a,b) is obtained,

which gives the minimum cost for the required flow. This method can be

generalized for more than 2 destinations. However, with n sinks the

number of recursive relations to be evaluated at each node is 2"n 1

Hence, the calculations required become prohibitive for large n

Arthur F. Veinott iV-1,2] has considered the characterization of the

14extreme points of Leontief substitution system. The special network model

considered by Zangwill corresponds to a transhipment Leontief substitution

mode'. So, Veinott's approach puts Zangwill's algorithm in a more general

setting. However, except for special cases (e.g., the one considered by

Zangwill), the amount of computational effort required to search the extreme

points to find one that is optimal increases exponentially with the size

of the problem and so tends to be enormous.

4 The definition of Leontief matrix, as well as transhipment Leontlef
substitution model is discussed in the paper by A. F. Velnott [V-1,2].
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B. Rothfarb and M. Goldstein (G-lI in a recent paper considered

the one termiral Telpack problem. This is similar to Zangwill's one

sink, multiple source network problem, but they considered the cost

function obtained from that in Figure 1.4 by connecting the discrete

points by straight lines. Assume that the nodes are sequentially

numbered from 1 to n , where the node n is the sink and the others are

the sources. If an arc connects nodes i and j , j > i , it will be

denoted by b(ij) . If the flow is directed towiard j it is positive,

and if directed towards i it will be negative. The cost curves are

defined by means of their points of discontinuity in derivative (break

points) for arc b(i,j) ; let [Wk(i,j),Ck(i,j)] represent the flow and

cost coordinates of the kth smallest positive value of flow at which the

cost has discontinuous derivative. Then W-k(i,j) = -Wk(ij) and

C-k(i,j) = -Ck(ij) . Let C (ij) = W (i,j) = 0 . The level of flow x

in an arc can be expressed as a linear combination of the flow levels

at the nearest break point above x and the nearest one below x . To
k=+K

accomplish this, let IAk(i,J)Ik=_K be the set of numbers called flow
* k=-K

indices associated with arc b(Ij) such that

+K
0 < A k(i,j) < 1 and I Xk(ij) 1 I

k=-K

where K is a large enough number to cover the entire required range

of flow values. If X a(ij) > 0 , then only Xa-l(ij) or A a+l(ij) I

but not both, can be positive and only these two indices can be nonzero.
K

Then the flow on b(i,j) can be represented as I Xk(i,j)Wk(ij)
k=-K

A solution of this problem is given by a linear program.
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K
Minimize I Ck(ij)A-k(ij)

(i,j) k--K

K K
Subject to X Wk(i"j) Ak(i~j) I W k k(j'i)-A k(j,i) r

Jii<j k=-K jji>J k=-K

for i - 1,2, ... , n-i-

where ri is the required flow from the sou'ce node to terminal node n

Furthermore, there is an additional constraint; the set of flow indices

l~k(',J)lk=K for each arc should satisfy the constraints specified aoe
k=-K

So the ordinary linear programming procedure for generating the solution

is not enough. Rothfarb and Goldstein show that any basis of the linear

program will have arcs of two kinds, TI and T2 . T1 are the arcs

where one flow index is 1 and the rest 0, and T2 are the aics with 2

nonzero flow indices. By a series of theorems they established an

intricate procedure which treats arcs of type T and T2 differently

and determine which arc to bring in the basis at each step. So the pivot

computation is far more elaborate than usual simplex method. Also the

procedure can converge to a local, but not global optimal point. Conseque-Itly,

it does not appear superior to the one-terminal versions of the algorithms

of Chapter 3 and Chapter 4 to follow.

At this point one of the simple variatiorsof the problem which is

5
easily solved should be mentioned. In this case there is just a single

source and a single sink with flow requirement f between them and a

concave cost function. Since it has been established that there must be

an extreme flow which is the minimum, there will be a single path between

the source and the sink. The flow in each of the arcs in this path will

Ie f . To find the optimal path, use the cost of f amount of flow in

5 The procedure is cryptically mentioned by Zaiigwill.
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each arc of the network as the length of that arc. The shortest chain

between the source and the sink of thh network will be the global minimum

cost solution.

Hoang Tui [T-2] has described a procedure that seeks the global minimum

of a concave objective function f(X) with the polyhedral constraint set

n C)D e R . The procedure starts with a local minimum point X which is

assumed to be a nondegenerate (a necessary condition) extreme point of the

polyhedron D . The procedure is illustrated for n - 2 case in Figure 2.1,

where D is OACEFG. For notational simplicity X0  (origin 0 in

Figure 2.1) is taken to be the origin. Along its n distinct edges, n

points 1y., y l,n (y1 ,1 and y1 , 2 along OA and OG) are chosen

such that yl,k k.01,k where k is the direction vector of the kth

edge, 8 l'k = Max {0 I F(ýke) > a l a. = f(XO) , and F(X) is the concave
exeso6 offx nR l,k,

extension 6 of f(x) in y . s are linearly independent vectors.

Within the cone X , y 1"1, ... , y ln , (the cone oy1 'ly 1 ' 2 ), the value

of f(X) , is greater than or equal to aI . The auxiliary problem at this

point is to find the most distant extreme point of the polyhedron D from

the hyperplane passing through yl'l, ... , yl,n (the line y1 ,1y 1 , 2 in

Figure 2.1) on the opposite side of the origin X0  (the right-hand side

of yllyl,2*' in Figure 2.1). This is equivalent to solving the linear

program

n
Maximize h(X) = X k

k=l

Subject to X E D

6Concave extension of the function f(x) Is any function concave on the

whole space R n and colncidinU with f(x) on D . I

S.....:•.... • |NNI i nli m ai il m•il m~imi I nm I I•a I IIII1 mum ''I I
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FIGURE22.
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where k 's are elements of the n dimensional vector X = B- .X and

1,1 l,nB is a matrix with columns y , ... , y

If no solution of the above linear program exists, then X is the

global minimum because the cone defined by X0y'll, .. 1, y contains

the entire polyhedron. Otherwise, evaluate f(X) at the new extreme

point XI (point E furthest away from y1,1y1,2 in Figure 2.1).

Deten&iine a 2 = Min OIl xl1 (a2 < al in our example) and find

y2,kk = 1,2, ... , n along n edges (Oy2, and Oy '2 in Figure 2.1)

as before, such that F(y 2'k ) >- a2 a and also determine R2 = 02X such

that e = Max aO 0 ! F(0X) > a Auxiliary problems involving
2 k =

1,k - 2smaller cones are generated by replacing one of the y by X and

keeping the others fixed. (Do this for yl1k only in case the corresponding

Ak # 0 .) (For the problem of Figure 2.1, the two auxiliary problems are

2,1-2finding the furthest points of D on the right side of y X and

2, 2- 2y X . No solution exist for the Ist problem because the entire

polyhedron is on the left of y 2,1-2 . For the 2nd auxiliary problem

F(X 2) is zhe solotien. Now use point F in the same way that E was

used 'reviously.) In this way, more of the polyhedron is covered by each

succeeding sut of auxiliary problems; when the entire polyhedron is covered,

we have obtained th, global optimal solution. The advantage of this

procedurc is that all the auxiliary problerms have the same constraint set

D . However, the procedure is not useful in the problem of this thesis

becausco dlr1,'2nsion n of the polyhedral set 1) is very large. The number

of auxiliary probJcems generated when k of the auxiliary problems arc

solved i-. ,. , an exponent ta. growth. Wheras In the branch and bound

procedurce ';-ribed in Chapter 4, the number of sub-problems becomes 2k

when th1e ktI subprotlem is solved. Also h(X) is given in such a way that

we c,-•vnot use any ,-fficient wethod like the shortest path method to solve

the auxiliary probleim.

| | "m"MONA
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K. Ritter [R-3, C-3] has described a similar method of determining

the global optimal solution for the nonconvex quadratic cost minimization

problem with polyhedral constraint set. The procedure involves generating

cutting planes which exclude local optimal points without excluding the

global optimal point and then doing a local search (i.e., a search for a

local optimal point in the reduced set) on the reduced polyhedron. This
7

is equivalent to a variation of Hoang Tui's method, in which new local

search procedure is carried out on the section of the polyhedron cut out

by the hyperplanes generated by yll, ... , yl,n on the opposite side

of origin. The generation of a meaningful cutting plane in Ritter's

method itself involves solving a quadratic programming problem. For our

problem (assuming quadratic concave cost function), both the generation of

cutting planes and a local search on the reduced polyhedron are huge

quadratic programming problems. So, the procedure is not that useful.

However, as we will point out in Chapter 5, some clever way of generating

the cuts by solving simpler subproblems, and also a simpler local search

procedure, may be a hopeful theoretical direction to pursue in order to find

the global optimal solution for the problem of this zhesis.

A. Victor Cabot and Richard L. Francis [C-11 have described a method

of solution for the nonconvex quadratic minimization problem by ranking

the extreme points. The method per se is not applicable for our problem,

but the idea can be adapted to yield a solution procedure. Consider the

problem:

Minimize f(Y) C YTY + Y TDY
(P1)

Subject to Y E S , where S = {Y I AY = b,Y > 0}

7 This is mentioned in the paper described in the preLuui•g paragraph.
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where Y is an n-vector of variables, the matrix A is m x n , the

matrix D is n x n , and vectors C and b are n- and m-vectors

respectively. d. j = i,2, ... , n are columns of the D matrix. Solve

u. = Min (dT.-Y) subject to Y e S , and assume that each of these n

problems has a finite minimum. Then consider the problem

n
(P2) Minimize Y (c + u )y

Subject to Y C S

where yj's are elements of the vector Y and c. 's are elements of
In 3

vector C . Since f(Y) = X (cjyj + YTddyj) , and YTd. > u. , then
j = l 3 -- 3

g(Y) < f(Y)

If Y is the solution of P2, then a lower bound on the optimal

value f of P1 is f9 = g(YO) and an upper bound is fu = f(yO) It

can be easily proved that if {Y k} is the set of extreme points of S
g(k) *

such that g(Y ) < f then the optimum solution Y of P1 is such that
= U

Y C {yk} . So, the algorithm here involves searching systematically the

set {Yk} . To find the extreme points of S yielding the 2nd, 3rd,

4th, etc. smallest values of g(Y) , Murty's [M-4] extreme point ranking

method is used. In this method only one pivoting step (for the non-

degenerate case) is necessary to get each next lower ranked extreme point.

Thus, this whole procedure involves:

Step 0:

Solve n linear programs to obtain u. j = 1, ... , nI

Step i:

Determine Y , the optimal solution of P2. Take f , = g(YO) and

f = f(YO) and Yo as the currvit best solution of Pl.u
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Step 2:

Use the extreme point ranking procedure to get the next best extreme

point solution Yk to P2. If g(Y k) > f , then stop - the current best
U

* yk f
solution is the minimum solution to P1, and f = f . If g(Y ) < f

then replace f by g(yk)

Step 3:

If f(Y k) < fu $ then replace fu by f(yk) and replace the current

kbest solution of P1 by Y . Otherwise return to Step 2 without changing

f or the current best solution.
u

Howev z, this method is not directly applicable to the problem of this

thesis for the following reason. The objcctive function in our problem,

when a quadratic approximation is made for all concave functions, is

f(Y) = I (c y. + d y• where d. < 0
j=l 3=

nd y is the element of the vector Y representing flow in arc j
-J

re d is a scalar, or, in the notation of P1, D is a diagonal matrix.

,nce, u.3 = Min (d y.) subject to the flow restriction of our problem.

is subproblem is to find the minimum cost multicommodity flow in the

twork where all arc costs are zero except one, arc j , which has a

inear cost with negative coefficient d . This yields a negative loop

;o the objective function uj tends to -• (by passing a very large flow

in the negative loop). Thus the method it; not applicable for our problem

because finite u values (which are unbounded here) are necessary to

form the subproblem P2. However, the following variation of the procedure

is applicable.



37

2.1 Solution Procedure by Ranking the Extreme Points

The problem considered has the objective function

M
Minimize F(Y) = J f (yj)

j=1l

Subject to Y e S

where S is the feasible polyhedron in arc space Y i.e., Y =

ij
;i >j

A X and Xi is a P.. vector i2kA and satisfies the constraint
ij ij ij ii I ii

equations l.lb and l.lc. If we can find the upper bound8 U. of the flowJ

in each arc, then we consider solving the problem

M
Minimize G(Y) = X Cj y where C i U f(U.) (in Figure 2.2)

j=ljjj

Subject to Y c S

Then G(Y) f F(Y) in the entire feasible range of flow. Solving the

modified linear problem is the same as solving shortest chain problems

between all pairs of requirement points where arc lengths are C i's . Let

there be n positive requirement (rij > 0) pairs.

Step 1:

Find the shortest chain, using C.'s as the distances of the arcs
1

and pass the required flow through the shortest chain. Let Y0  be the

are flow vector. Then a lower bound of the optimal value F of the original

prob]cen F£ . C,(Y 0 ) and an utpper botitid Is Fu W F(YO) . The current best

solution is YO

8A problem faced in the procedure of Chapter 4 and discussed there. A
trivial upper bound is the sum of all required flows.
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Determine the 2nd shortest chains between all n pairs of requirement

points. Let A. , be the difference between the 2nd shortest chain and1

the shortest chain between source-sink pair ij . The list of n numbers

{A ijrij } is the amount of increment for the neighboring extreme points of

yO , one (the smallest) of which corresponds to the increment of the next

best extreme point of S

Step 2:

Let s and t be the source-sink pair which gives the smallest

increment (from the list) over Y , among all neighboring extreme points

of the extreme points (YO, ... , Y kl) so far determined. And let it be

the neighbor of Ym(m < k - 1) Then displace the flow r from the

chain between s and t corresponding to the point Ym to the newly

found chain between s - t which gives minimum increment. Calculate the
k (k)

new arc flow vector Y . If G(Y ) > F stop - the current best solution

is the optimal solution and F = F
U

Step 3:

Solve the next best chain between s and t ; find Ast the

difference between previously found chain and currently found chain

between s and t . One neighboring extreme point of Yk has increment

(G(Yk) - G(Y°) + Ast.rst) over Y and remaining (n - 1) neighboring

extreme points have increments {G(Y k) - G(Y ) + increments over Y of

neighboring extreme points of Ym except Y kI over Y. Include all

these increments in the list.

Step 4:

If G(Yk) < FU then replace FX by G(Yk) If F(Yk) < F replaceu u

k k
F by F(Y ) and current bcst solution of the original problem by Y

u
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Otherwise go to Step 2 without changing F or the current best solution.u

So, in this procedure, after finding the 2nd best chain for all

pairs, we need to find only the next best chain for a particular node

pair at each iteration. To reduce the number of searches we could

simply concentrate only on loopless chains. A chain with a loop cannot

possibly be a minimum for the original problem because by taking out the

flow in the loop we can reduce the cost. J. Y. Yen [Y-2] has proposed a

good method of finding the K best loopless chains. However, to avoid

confusion one should note that a chain with a loop, which is an extreme

point in arc chain space, can also be an extreme point in node arc space.

So by ignoring looped chains, we may be ignoring some extreme points,

but these are obviously uninteresting ones. At any stage k in this

procedure we need to store only increments of the neighLoring extreme
ponso k yO

points of Y over Y such that G(Y0 ) + (increment of neighboring

extreme points of Yk over Y ) < F and no others. The relative merit

of this method compared to the methods described in succeeding chapters

depends on the efficiency of the kth shortest chain determination

procedure. For the general problem such comparisons are hard to make.

As a last note on the available literature on this TELPAK-type problem,

we should mention the work of G. C. Watling and J. H. Weber [W-2]. They

developed a heuristic algorithm which synthesizes, from the traffic data,

the network and also the best position for switching centers. This

heuristic procedure uses only the total amount of originating and terminating

traffic as the input traffic data and does not consider the traffic flow

between specific originating and termindting points. This is reasonable

if the traffic is statistically well dispersed between all points, and

this method can handle a very large probl.,n. It is purely heuristic and can

yield a solution that is not even an extreme point of the problem we are

studying, and is not very mathematical in approach.
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CHAPTER 3

The particular solution procedure described in this chapter can be

used to solve moderate sized problems (networks of up to 200 nodes) and

it is very efficient (i.e., the procedure generally converges in a few

iterations). However, it yields locally optimal points and one does not

know how near the value is to the global optimal value. In this chapter

strategies that are useful in obtaining the global optimal, using a

procedure that yields local optimal points, are described. Certain

statistical procedures will also be developed, including a sequential

sampling plan where further search for the global optimal point is

stopped when the cost of further computation becomes more than the

estimated gain in reduction in the optimal value.

For the main procedure,of this chapter, to work, all the functions

f (Ym) , the cost of y amount of flow in arc m , have to be

nondecreasing concave functions in the feasible regions of ym . In

Appendix D it is shown that any concave function is continuous everywhere

except perhaps at the left and right-hand end points of the interval.

Since the function is nondecreasing it has to be continuous at the right-

hand end point. This continuity property may not hold at the left-hand

end point; there could be a jump at ym = 0 . Appendix D also proves

that both left-hand and right-hand derivatives D fM(Ym) and D+fm(y )

exist at all points except the end points of the interval, and the

following relations hold:

IThis procedure was suggetLed by Bernard Yagud [Y-l] for cooc.v(w cost
functions which have both first and seconid deriva tives, hti we ,Iiall v'hiow
that it is valld for any uotldecrcasing concave cost fuiictioll.
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(3.1b) (ii) D fm Ym) > D f > Ym

(3.1c) (iii) D-f(ym) => D+f m (Y ) V Y. in the open feasible
m . minterval.

The nondecreasing property of the function guarantees that both left

and right-hand derivatives are nonnegative. The following discussions

and propositions characterize the optimal flow pattern.

By Lemmas 1.1 and 1.2 of Chapter 1 we have shown that, if the cost

functions are concave, in the optimal flow pattern there is a single

chain between each source-sink pair; i.e., for every source-sink pair

st , a required flow rst passes through a single chain pst in the

minimum cost (optimal) network. (However, degeneracy may occur; two

chains may have the same cost.) We will show a stronger condition for

flow patterns where cost functions are concave.

Proposition 3.1:

If there are two chains carrying total flow rst between a single

source-sink pair st then the entire flow rst can be put in one of

the two chains without increasing the total cost.

Proof:

Suppose there are two chains Pa and Pb between source-sink pair

st carrying xa and xb amount of flow respectively such that

x+a IXb i rst .

For any arc m in chain Pa with flow level ym + xa , the

contribution to the cost due to flow between a and t in this arc is

taken to be gm(xa) f fm(ym + xa) - fm(Ym) . A similar definition exists



for the arcs in chain P b gm(') is also a concave nondecreasing

function because gm(.) is obtained from f m() by shifting the origin

to y " Define the functions C. (x a) . I gm(xa) and
a MCP

a

CFP (xb) b gm(xb) . From the above definitions, the cost of rst
b MCP b

flow is taken to be CP a ( + CPb(xb) and both C () and C (-)

are positive sums of concave nondecreasing functions, hence they are also

concave and nondecreasing. Therefore,

x x
CPa (xa) r C P r a(rst + r Cr Pa(O)

Pb(Xb) > b-.C, (r) + a C (0) because r X + xb

and

x xb,
>~( b r-t Ca C rst

(3.2) Cp (x) + X a (r ) + C b (rst)a b =s aat Pb

since CP (0) and CPb (0) are zero. The scalars CFP (r st) and CPb (rst)

can have one of the following relations:

Mi C Pa(rst) . C Pb (rst)

(ii) C Pa(r st > CP b(r st)

(ii) Cp (r st) C Pb(rS).
a b

If (i) occurs then putting the entire rst flow in P a or Pb results

in no cost increase by the inequality (3.2).
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If (ii) occurs, then putting the entire flow in Pb results in less cost

because

x
Cp(a ) + CP(xb) > ra- CP (r ) + Cb (r) > C (rs)

Pa a Pb rst Pa at r s b st Pb

And if (iii) occurs, then putting the entire flow in P results in lessa

cost because

Ca(x ) + C > + (rCP (rst) ( > C (r
P a Pbr at a st r st a at Pas

Thus the entire rst flow can be put into one of the chains without

any cost increase. 1

Corollary 3.1:

If there are multiple (more than one) chains between a source-sink

pair, they can be replaced by a single chain (one of the multiple chains)

without increasing the total cost.

Notation:

Pab C Pij means the arcs of the chain pab between a and b is

a subset of the arcs of the chain Pij between i and J

Proposition 3.2:

In the optimal flow pattern, if the optimal chain p i between

source i and sink j passes through nodes a and b , and there is also

a flow requirement between a and b , then the optimal chain Pab

b abetween a and b is such that PabC•PiJ"

/
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Proof:

Let r j be the required flow between i and j and rab

be the required flow between a and b . Suppose a precedes b

in the chain from i to j The flow pattern is unchanged if we

consider requirements ra r, b r' rj + r and rbj -rlJ

Since there is a single chain between i and a , a and b , and b

and j , chain ab coincides with chain ij between a and b , and

thus pab C P If b precedes a in the chain from i to j then

flow pattern is unchanged if flows r!b rj ,a r' r +r t andib ab ij ab

r j= r . Since there is a single chain between i and b , b and

a , and a and i PabCPij , pI

Thus we can restrict our search fir the optimal flow network to

solutions which have the following two properties: (i) a single chain

between each source and sink pair, and (ii) pab C Pij if a source and

sink pair ab is contained in the chain of another source and sink pair

ij .

3.1 Definition of f-Optimal Routing

A routing (flow pattern) is called c-optimal if it has the above

two properties, and if the least cost chain for an additional flow of

e units (where f is an arbitrarily small positive real number) between

source-sink pair ij is the same as the chain taken by the ij flow of

r j units.

The following example will clarify the concept of i-optimality.

For the network shown in Figure 3.1b, the costs of chains A and B are

shown in Figure 3.1a by curves A and B respectively. R is the point

where the tangent of curve B has the same slope as A . Suppose
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rs R < R and the entire flow is in chain B . For an additional

flow of amount e the cheapest chain is A because the slope at 0

of A is smaller than the slope at R1 of B . Thus chain B is not

E-optimal. But if the entire flow is in A then an additional flow of

amount e will take chain A because the slope at 0 of B is greater

than the slope at R1 of A , and chain A is E-optimal. It is also

globally optimal. Suppose r= R2 > R , and the entire flow is in B

An additional flow of amount c will take path B because the slope at

R2 of B is smaller than the slope at 0 of A . Similarly, if the

entire flow is in A , then an additional flow of amount E will take

chain A because the slope at 0 of chain B is gr-eater than the

slope at R2 of chain A . So, both A and B are E-optimal chains.

However, only A is globally optimal.

The algorithm discussed below searches for an E-optimal point. (The

relationship between E-optimality and local optimality is discussed later.)

The concept of E-optimality reveals a clue to the constructive approach

(of the algorithm) which the conventional definition of the local optimum

does not provide.

The following uotations are used in the subsequent discussions. P

is an M-vector where the element p is the amount of flow in arc m

corresponding to a feasible flow pattern (i.e., a pattern satisfying (1.1)

of Chapter 1). e is an M-vector of O's and l's. If e m I indicates

the inclusion of arc m and em= 0 Indicates its exclusion, then any

chain between any source-sink pair can be represented by a vector e .

C(P) is the total cost of the flow on all arcs corresponding to point P

/ M
i.e., C(P) = I f m(pm) 6 is a scalar and (P + 6.'i - 6-ej) is a

m=l
ipoint where 6 amount of flow is taken out fromn chain e of point P



and redirected to chain e . F (P) represents the total cost of alle

the arcs in chain e of point P (i.e., j fro(Pr and it is
mcchain e I

a concave function of P

The following small example of Figure 3.2 shows a point can be

E-optimal but not local optimal. Figure 3.2a gives the cost function

fA(.) and fB(-) for the flow in chains A and B respectively of the

network 3.2b between source-sink pair st with flow requirements r5s

Suppose the entire flow is in chain B . And the left and right-hand

derivatives of cost functions in their present flow levels have the

following relation: D -f B(r st) > D+fA (0) > D+f B(rs) . Then an additional

flow amount e will take the chain B because D+ f A(0) > D+ f B(r st)

Hence the present flow pattern is E-optimal. But if E amount of flow

is displaced from B to A then total cost decreases because

F-D f B(r st) > ED f A(0) . So, it is not locally optimal point.

Lemma 3.1:

For a concave cost function a local optimal point having a single

chain between each source-sink pair is an E-optimal point. An E-optimal

point is a local optimal point only if the single path e between every

source-sink pair also satisfies the following inequality

(3.3) D-F,(P)=< D+F (P) V e

e* e

where e connects the same source-sink pair as e (This inequality

is satisfied by any c-optimal point for problcms with concave cost function.

where derivatives exist at all points. Hence in this case a point is a

local optimum if and onl if it is E-optimal.)
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Proof:

Consider a locally optimal point P having a single chain between

each source-sink pair. Consider a point Q within E-neighborhood of P

Q is obtained from P by redirecting some 6(< E) amount of flow

between a source-sink pair from the single chain e to some other chain

e . (There could be more than one chain and could be more than one

source and sink pairs. But these cases of more than one different chain

can be reduced to only one different chain between a source-sink pair

without any cost increase by Corollary 3.1.) Q = P + 6.e - 6.e . Let
.- * * *

= e -e n e , and F_* and F * be defined as cost of flows in
C e le

the set of arcs in e and e n e respectively.

C(P + 6"e ) = C(P) + F ,(P + 6 .e ) - F ,(P)
e e

= C(P) + F_,(P + 6-e ) + F * (P + 6.e ) - F_(P) - F , (P)
e e fe e e ile

C(P + 6-e) = C(P + 6 .e - 6.e + 6-e ) = C(Q + -e )

= C(Q) + F_*(Q + 6.e) + F (Q + 6.e) -F_(Q) - F * (Q)
e e le e e fle

= C(Q) + F_,(P) + F , (P + 6.e ) - F_,(P - 6e ) - F * (P)
e e fle e e f(e

The cost value F_*(Q -I- 6e ) depends on cost of flow in the arcs in the
e

set e At Q the flows are rcduced from the level at P by 6 on

-**
this set e ,and when 6 is added back the level of flow in these arcs

Is the same as at P , so F_,(Q + 6.e ) = F_,(P) Similarly, we can
e e

show F , (Q + 6-e ) = F * (P + 6 c ) , F_,(Q) = F_(P - e ) , and
e fe e fe e e

F* (Q) = F* (P)
e fle e fie
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Now, C(P + 6.e) - C(P + 6.e ) C(Q) - C(P) - 2( F (I)

I"F_,(P + 6-e ) - ½"F_(P - 6-c)> C(Q) - C(P) (because F_*(.) is a
e e e

concave function) > 0 , because P is a local optimal point. So,

C(P + 6.e ) < C(P + 6.e)

or,

{C(P + 6.e )-C(P)} < {C(P + 6.e) - C(P)}.

Hence, extra (_< E) flow is passed through the optimal single chain.

So, P is an E-opti.mal point.

Let the E-optimal point P satisfy the inequality (3.3). Consider

a point Q in e-neighborhood of P such that Q - P + 6.c - 6.e where

* + P "- I)>CP

C(Q) = C(P + 6-e - e ) C(P) + 6.D+F (P) - 6.Dy(11) > CM

(because (3.3) is satisfied). Any point Q in this neighborhood will

have the above relationship, so P is a local optimal point.

A point P is E-optimal if the following inequality is true for V e

{c(P + 6 . ) - C(P)} {C(P + 6.e) - c(I,)

or,

6-D+F *(P) < 6-D+F (P) because C(P + 6.e ) = C(P) + %-D+F ,(p)

+ +

e e

or, D+F (p) < D'F (P) V e . If the derivative exists at all points
_ e

e

then D-F *(P) = D"F *•(F) < D+F (P) . So, the C-optimal point also
e e
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satisfies the inequality (3.3), and therefore is a local optimal point.

Thus for this case a point is e-optimal if and only if it is a local

optimal point.

The example of Figure 3.2 shows a counterexample if the inequality

does not hold.11

3.2 Algorithm

In the description of the aJgorithm the derivative Df(.) of the

cost function at a point is used. If this derivative does not exist then

the right-hand derivative D +f(.) is used.

Step 0:

An arbitrary positive number representing length is assigned to

each arc of the network (e.g., Euclidean distance. Or an arbitrary

flow level is assigned for each arc and the derivative of the cost

function at the flow level is use: as the length of the arc).

Step 1:

Using the lengths specified, the shortest chain is determined

between each source-sink pair (if there are many pairs of sources and

sinks, Floyd's algorithm is used).

Step 2:

The entire required flow between a source-sink pair is passed

through the shortest chain between them. The total flow y in each

arc m is determined. The total cost of the flow is determined. ]f the

total cost is unchanged from the previous iteration the procedure is

stopped. (Note: If the flow in each arc remains unchanged in two

consecutive iterations, then the shortest chain and the total cost also

remain the same. However, the flow might change between two degenerate
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points without havtng any change in the total cost. Cycling may occur

if we use only the flow value to find the termination point. Such cycling

is not possible if the cost function is strictly concave.)

Step 3:

Derivatives of the cost function, Dfm(ym) , at the flow values Ym

are determined for each arc. D+f (ym ) for functions having no derivativemm

at Ym . These derivatives are used as the new lengths of the arcs.

Go to Step 1.

3.3 Remarks

When the algorithm stops, then the specified chain pij between a

source-sink pair (ij) satisfies the inequality • Df (y_) <

mcpij

X Dfm(Ym) V p.j chain, assuming derivatives exist. Now,
mcpij

Dfm(y) = D+f m(Ym) = D-fm(ym) . The inequality j D f (ym) <mm, m =
mcPij

SD+f m(ym ) is true even if Dfm(ym) does not exist. Therefore, the
mcPmij

point is an E-optimal point (from the proof of Lemma 3.1, where D+ F

is the same as D+f m(y m) and ym represents point P and
**)mm mi

pi. e The inequality (3.1) also is satisfied If Df (y ) exists;
in tha mm

in that case the point is a local optimum. H-wever, a post-optimization

procedure is necessary to obtain a local optimal point for functions whose

derivatives do not exist. Take each source-sink pair and change the

lengths of arcs along the optimal single chain from D+fm (ym) to D-f m(y)to

If the shortest route remains unchanged, then (3.3) is satisfied and the

point is a local optimum. If the shortest chain changes, then an improvement
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(reduction) in total cost can be achieved by using this new shortest chain.

The steps of the algorithm are repeated using this new point. Cycling

is not possible here, because, if a different shortest chain is obtained in

this procedure, the total cost strictly decreases when the flow is redirected.

The motivation for using derivatives of the cost function is the

following Kuhn-Tucker necessary condition for optimality for differentiable

cost function (i.e., Df(.) exists). The unrestricted minimization

problem, equivalent to the problem (1.1) with dual variables Xij for

constraints (l.lb) and 8k for nonnegativity constraints (1.1c) is
ij

given by:

H P k ij k kL Y f fm(Ym) - ij Yx.i jiaxi
m=l All ii k-l ki Aij kij

3i>j 3i>j

k
Since each variable ym is a linear combination of xi, variables with

coefficients 0 or 1,

•____L

ki Df (y) X- k = 0.
axkk m ij ij
ij meP jj

The above equation and the Kuhn-Tucker necessary condition for optimality

gives the following conditions.

If x k >0 then a k = 0 and X Df (y ) and
ijij ij k pk k

if xi 0 then 80 an Df (y X >0.

kk

Sxij k mm ij
mcPij

The above procedure satisfies these conditions. Xi is the l(-ngth

ii

of the shortest chain between ij
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The following theorem establishes the finite convergence of the

procedure. In practice a very quick convergence can be obtained.

Convergence Theorem 3.1:

For concave nondecreasing cost functions the algorithm described

above converges to an C-optimal point in a finite number of steps.

Proof:

We have already shown that if the above algorithm terminates, it

does so at an C-optimal point. Also we have shown that each iteration

of the procedure involves solving a shortest chain problem where the

initial distance matrix has nonnegative elements. Hence, the number of

steps in each iteration is finite (- N3 where the number of nodes is N).

So, finite convergence of the algorithm is achieved if the number of

iterations is finite. This is established by proving Property (a) below

for any nondecreasing concave cost function.

Property (a):

If the algorithm generates two consecutive distinct points XI and

X +1 (Xt+ is obtained by one iteration starting from X ) then the

total cost Z(X) strictly decreases, i.e., Z(X ) > Z(XO ) . This is

proved as follows.

L t+iLet the flow values in each arc m be ym and ym corresponding

to two consecutive points, X and X£+ (the feasible region in the

chain space). X£+ is obtained from X by the change of a certain set

of flow chains between source-sink pairs. Let one such chain be changed

from P j to P " Since Pij is the shortest chain using Ym flows

in ecch arc m
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I +Ž D + f.(y) (If the derivative Dfm~L exists,mc ffi ,y m, mc m ''
mePij mePij

then the inequality is also true when Defm is replaced by DfmM

If E amount of flow is redirected from Pij to Pij then the

resulting saving is:

{mepj_ D-fm(y) - , D0f(ym) >

[mcPij mcPij

( b - *(because from concavity D-> D+f )>D where iP ij - p
-*

and Pj = Pi - p.j n Pt.) Also from concavity

SD+f(yt - • D+fm(y•) > D+fm(y") > a D+f(ym +

mcpij mcPij mcPij mcpij

So, a further saving is obtained if a further C amount is redirected,

and the maximum saving is obtained if entire flow rij is redirected

from pij to p ij A similar redirecting of other flows through the

shortest chains reduces the total cost value and flow values ymZ+l

are obtained, hence Z(X ) > Z(X+) . But equality is only achieved when

there is more than one shortest chain and cost functions are flat in the

region involved in the transfer of flows or when flow values remain

unchanged. In both cases the algorithm stops at X. So, if X and

X L+ are distinct points then Z(X ) > Z(X )+l

But in the algorithm described above the sequence generated by {XI}

is the extreme points of the polyhedral set defined by (1.1b) and (l.lc).

Since the polyhedral set has a finite number of hyperplanes it has a

finite number of extreme points. Nondecreasing Property (a) guarantees

that no two elements of X correspond to the same extreme point. Hence,
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the number of elements in any sequence generated by the iterations of

the algorithm is finite. Thus finite convergence is always achieved. 1

3.4 Modified Procedures for Differentiable Cost Functions

For functions having derivatives at all points (i.e., differentiable),

all e-optimal points are local optimal points. In this case the following

modified procedures are sometimes used to avoid some local optimal points

and get near the global optimum. (i) In ist modified procedure if a

point X1+ is obtained starting from a point XR then the next iteration

is started from a point OR' = + (1 - a)X'+l(0 < B < 1) . However,

Property (a) may not be preserved. Similar arguments as in the proof of

Property (a) can show Z(X ) > Z(X +I) , but not necessarily

Z(Rl) > Z(X +I) . However, if B is chosen properly in each step to

maintain monotonicity then only convergence Theorem 3.2 below is applicable.

(ii) In 2nd modified procedure a convex combination of cost is used for

new starting point (i.e., here cost on an arc m =- *Df m (RI) +

(I - B)-Df m(X +)) similar arguments as in the proof of Property (a)

can show Z(X ) > Z(Xt+I) . Now, Z(X +I) = 8.Z(X ) + (I - a)-Z(XE+ ) <

S8.Z(X ) + (1- 8)-Z(X ) = Z(X ) . So, Property (a) is true here.

Convergence Theorem 3.2:

For differentiable concave nondecreasing cost functions the

modified (i.e., 2nd modified procedure and a special case of 1st modified

procedure where B is such that Property (a) is satisfied) algorithm

converges to an E-optimal (also local optimal) point.

Proof:

Here termination proccditre is same as main Algorithm 3.2. So, if

the algorithm terminates it does so at C-optLimal point. Since Lhe cost
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functions are differentiable, C-optimal point is also a local optimal

point (by Lemma 3.1). The shortest path procedures in each iteration

are finite. The sequence {X ) generated does not necessarily have

finite number of elements. However, convergence (not necessarily finite)

is established by proving the following Properties2 (b) and (c) in

addition to Property (a). Consider the algorithm to be a mapping M

which maps from a feasible region of flow X to X itself.

Property (b):

The feasible set X or, at least the subset in which the sequence

{X') generated by the algorithm lies, is compact.

Property (c):

3
The map M is closed. The properties are proved as follows.

(b) The feasible region in X-space is defined by the linear

inequalities in (l.lb) and (l.lc), hence they form a convex set which is

zlosed but which could be unbounded. In the solution procedure only the

required amount of flows rij is sent through the shortest chain. Thus,

the flow values on any chain in a point X in the sequence generated by

.he algorithmis bounded by r~ Max {r . The set is bounded (since
ij

!ach element of X is bounded). The set is closed and bounded, and thus

:ompact.

Wc) The closedness property of map M will be proved only for

.unctions with derivatives, which is the case here. X and 0 are two

'Properties (a), (b) and (c) are needed by Zangwill's theorem on algorithmic
convergence (Page 91, Ref. Z-2). This theorem is used to prove the
convergence of the map M defined below.

Clusedness is a property of a point to set map. Definition: The clos.td

map M is such that X, 0" E M(X£) , and 0. 00 Implip:
S0 E M(X) 0
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notations used to define a feasible vector in chain-space. The polyhedron

S defined in Chapter 1 for X is also defined for 8 , i.e.,

k k k
S e {O = j k d > r V source-sink pair i j 0 0

k-i ij = ij i

If there are n source-sink pairs with positive requirements, then only

n elements of X or 6 corresponding to an extreme point are positive.

The process of finding the shortest chain by using the derivative of the

icost function at the flow value on each arc at X , corresponds to a

local search operation to find a vector 0 which minimizes the linear

approximation of Z(X) in the vicinity of X£, i.e.,

I 12Minimize Z(X ) + DZ(X )(8 - X )

Li
Subject to 0 C S , where DZ(X ) is the derivative of Z(X) at X .

Since X is constant, the above problem is the same as the linear program:

Minimize DZ(X 1 ).8

Subject to 8 c S

If an extreme point e£ solves this problem,then 6£ defines a new set

of shortest chains. The direction vector d 0 - X defines the

direction of improvement. The procedure of finding a point X of maximum

improvement of the cost function i.n this direction is to find X - X + m.d

which minimizes Z(XI + T'd ) subject to 0 < T < 1 . Since,

X - X + •-d (1 - r)X + i.e£ , the vector X is obtained from X by

transfer of (Trrij) flow from the path corresponding to XI to the path

corresponding to e for various ij . Because of the concavity (as

discussed before) the maximum improvement occurs when i - 1 . So,
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X +1 -X I + d I a6 and the map4 M(X) is defined as:

W(x) - {e; Minimize DZX)Xe' - wz).e
e'cs

To show M(X) is a closed map one has to check: Conditions X£ -, X°

and et -e 0 where e t M(X) -> °0 E M(X°) This is equivalent to

showing Minimum DZ(X 0 )'e' - DZ(X°).e° . Consider the inequality:
0'cS

IDZ(X').e' - DZ(X°).e'l • IDZ(X ) - Dz(x°)I• 0e'I < .•

where 1e'I < c because of the compactness of the feasible set and

6 -0 as X X

Since the difference is uniformly bounded in 8' by 61.c

IMin DZ(Xt)-O' - Min DZ(X°)-O'l I 6,.c or,
e' l'

JDZ(XL).60 - Min DZ(X°).O'I < 6,.c , (because e C M(X ))
0' 2

raking the limit over Z , c being a finite number

IDZ(X°).e° - Min DZ(X°).O'I < 0 =>
0'

DZ(X°).EO Min DZ(X°).e' => e0 M(XW)
6'

M> H is a closed map.

Properties (a), (b) and (c) fulfill all the conditions of Zangwill's

heorem on algorithmic convergence. Here the solution set is the set of

The map M is described over the continuous variable X . However, it
uses only extreme points. Hence, it goes through only discrete points
of the set and corresponds to an iteration of the olgorithm.
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E-optimal points, so either the algorithm stops at a solution or the

limit of any convergent subsequence is a solution. 1

3.5 Strategies to get Near the Global Optimal Point

The major drawback of this procedure is that it terminates at local

optimal points and we have no idea how much less the global optimal

cost might be. We have tested computationally various heuristic approaches to

get near the global optimal point. The different approaches are as follows.

Approach (a) is suggested by B . Yaged and he tested it emperically.

Approaches (b) and (c) are new.

(a) Using a Convex Combination of Flow Vectors or Cost Vectors

If X and X£+ are extreme flow vectors in the ith and (. + l)st

iteration, then the (9. + 2)nd iteration is started from

X£+2 = BXZ + (1 - B)Xt+I where 0 < a < 1 . When B is near 1, the

change of flow is small between two iterations. Sometimes this approach

helps in climbing out of the valleys of the local optimals to get at the

global optimum. There is no one a which gives good results. The test

on different problems shows that usually the number of iterations increases

when such a convex combination is used.

Sometimes a combination of marginal costs is used instead of a

combination of flows; i.e., cost on arc in = B"Df (Xk) + (1 - S)'Df (X+)
m mn

is used. Bernard Yaged used different B values to get better local

optimals and he reported an acceptable range of 8 in the interval

(.8, 1.2). The use of this over-relaxation procedure (i.e., 8 Z 1) may

be advantageous for some problem, but in some problems if a B > 1 is

used, then some elements of the distance matrix may be negative. So some

&pecial precautiorn is needed to solve the shortest chain problem.
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Sometimes instead of using marginal cost (i.e., Dfm (y m)), average

cost is used " ei n . Here the proof of convergence of theYm)

algorithm may not be established. However, use of the average cost value

initially is sometimes helpful in getting a good starting value for using

marginal cost, particularly when the cost function has a jump at 0.

Sometimes a combination of average and marginal cost gives good results.

Each of the methods have been tested computationally for different

problems, but it is difficult to specify which works where.

(b) Specializations of Step 0 of the Algorithm, a Systematic Search

for Better Starting Points

Different strategies are employed to get better starting points.

(i) Initially a local optimum is obtained using the algorithm above -

then to get a new starting point for the algorithm, all the arcs in which

the flow value is lower than a certain amount are made very expensive -

this results in using the arcs whose flow value is large more effectively

and not using arcs with low flow values. (ii) To search in a more spread

out area, arcs having positive flow values for one local optimal point are

sometimes blocked to get a completely different local optimum.

The procedures (i) and (ii) are utilized around the best local optima]

value obtained so far, to determine whether it is better to search in the

vicinity of the best local optimal value (i.e., procedure (i)) or farthest

away from the best optimal value (by procedure (ii)).

From the test results it is recommended that procedure (ii) should

be used initially to get a few very different local optimal points. Then

procedure (i) should be used to search near the best local optimal valuie

so far obtained.
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(c) Random Starting Point Selection Strategy and a Sequential

Sampling Plan

In this method (a similar method is suggested for travelling salesman

problem in Ref. [R-2]) the global optimal cost is estimated from a

series of observed local optimal costs. The local optimal costs are

generated by selecting random starting points (not necessarily within

the feasible region) for the above algorithm. Suppose that a sample S

of size n of local optimal points having values ci,c 2 , ... c has

been determined. We shall give a procedure for estimating the global

optimal cost given this information.

We have no a priori knowledge of the distribution of local optimal

costs, so it is assumed to be uniform between a and a + 6 . Given

el, ... , cn we wish to estimate a and 6 . (This uniformity assumption

in the case of a total lack of knowledge has the approval of both of the

Bayesian schools [R-I], i.e., necessarists (Jeffreys [J-2]) and

subjectivists (Savage [E-2, D-l]). Jeffreys argued for the legitimacy

of using a uniform distribution in case of a total lack of information

by quoting that "Bayes, in his great mermoir, repeatedly says that the

principal (i.e., assigning equal probability or assumption of uniform

distribution) is to be used only in case where we have no grounds for

choosing between the alternatives." Edwards, Lindman and Savage have

shown in a theorem that under the assumption of a uniform distribution

of parameters, the calculated approximate a posteriori distribution agrees

closely with the actual a posteriori distribution. (Here the uniform

distribution is assumed of the parameter rather than of the distribution

function itself. However, we can think of the distribution function

itself as a parameter.) So, the basis of the assumption is philosophically

coherent with the Bayesian approach.)
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The estimate of a is the estimate of the global optimal solution.

The elements of sample S are independent, and each is from a uniform

density function between a and a + e . So, the likelihood function L

is defined as the following function of the sample S , a and 0

L(S;a,6) = if a < c < a + 0
6 n = =

= 0 , otherwise.

So, the maximum likelihood estimates- of a and 0 are respectively

minimum (cl, ... , Cn) , and {maximum (ccI ... , cn) - minimum (c] ... , Cn

Let T and U be respectively, minimum and maximum elements of the

sample S . Then the distribution functions of T and U , F(t) and

G(u) are as follows:

1 - F(t) = Prob (T > t) = (a + t) for a <n +

density function f(t) dF(t) =__n(a + - t)n-1 for a < t < a +0dt n = -

= 0 , otherwise.

Expected values

5Definition: The maximum likelihood estimate of e based on a random sample
S = (Xl, ... x ) is that value of 0 which minimizes L(S;8)

,)• ... f(x n,) where f(xi,8) is the density function of x.

with parameter 0) considered as a function of 8 for a given sample S
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ai+e a+O.-

E (T a) = (t - a) fW dt (t a). (0 (t a-I dt

nOox(l - x)n-I dx

0

n.(2n) = + 1

where x = t B(2,n) is Beta function with parameters 2 and n and

B(a,b) F F , and Fa - a- a - 1 (f-denotes a Gamma function.)

la +b

G(u) Prob (U < u) --- ) for a < u < a + 0

density function g(u) G _-_ _.(u _ )n-I for a < u < a + 0du F3n= =

= 0 , otherwise

O++n - n-

E(u- a) (u - O)g(u) du = (u - _1) -n(u C,) dufr f1n
0+4

-
u / ( c,)n du

Cl

nO xn dx - 2 where x = O

(n ]). n- -1.0• O T

E(U•0= T)0 ; or, EUE( -T) n + n + 1 n + ] n--] n + 1

E (1') a •4n-- t-4e (u- T• SO n-F TT a
n.(T) = \, 4-=-- ] .O, E T n- )=c .

Hence, (T - is an unbiased estimator of a . The variance of

this estimator gives an idea of how good this estimator is.
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Variance ( T  1-)= E (T• 1 •- (T -nE-n ))I T( -L n a)

2 2 2n 2 2
E(T ( -E(U-T) + "-E(U) -a"E(2) (n- ) (n- )

Now,

a.+O

E (T 2) E(T - 2 + 2.E(T)'M - a2= f (t - ) 2 n (, + a _ t)n-ldt

+ 2 •2+n-2-2 
*- 

2

-ne2fx2(1 _ x)n-1 dx + a2 + 2- ne 0(3,n) + a 2+ 20n +---- n2(3)+ 2+n + 12"

0

where x a

n02  [+ a 2 + 20-a 202 + 2 + 20.•a

Fn+3 n + 1 (n + 2)(n + 1) n + 1

E(U E) - a) + 2-E(U)-a - a f (u )2. n(u - a) n-I2=EU-) 2
-2 = (ua.du +

J en
a

+ 2a + nO - 2

2 n+l 2 2n6.a nO2 2 2n0.a

Sn-4-- 1 n +--2 + ++ 1
0

(where x =

The joint distribution function of T and U is given by 11(t,u)
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H(t,u) = Prob (U < u,T < t) = Prob (U < u) - Prob (U < u,T > t)

= G(u) if a < u < t < a + e [since, P(A) = P(A A1 Bc) +

+ P(A n B)]

= G(u)- (u _.t) if a < t < u < a + .

•21i(ttu) = f

density function h(t,u) = 0 if t>

-a ;_ _nn (u- t)n-i1 n(n - 1) (u- t)n-2 , < t < u < a + et) 1=O O (u tt<) •+0_
at[n J en

0 , otherwise

c+O u ci+Ou

E(UT) = u't'h(t'u)'dt'du =n(n - ) (u - t)n-2 u'tdtdu

OL t U O

a+6 u a+6

n~ 6n 1) . .( t)n2dtu = on~n6n f U

[(x(u - ca) + c)(1 x)n-2 (u - a) n-dx]du

a+6
n(nn- 1) [(u - a) n.u-a(2,n - 1) + a(u - )n-. u-B(1,n - 1)Idu

where x = , t = x(u - a) + a , and u - t = (1 - x)(u - ci"

twer x u - /t=

-- n(n - 1). [(2n 1). (nu ÷ c).d + c_._(-,n 1).

(u 1

= n(n - n x n7 *ff(ex + cz).Odx +

0 0

x (Ox + cx)'d,] (where x = u ci)
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nn(-1)1) n2 2+ + + 1Sn(n 1)n nn n+2

2a.e + a

Hence,

Variance T - U T) 262 + ,2 +26-a

( 1 n 1))2 + 2.1

(n - 1) +

+ I .( ne2 + a2 +20S- a 2 n6 2

(n -)2(fl-2 +n + 2n - n 1) (n + 1) (n + 2)1

Since

E(U - T)2 = E(U - 2UT + T2) = E(U2) - 2E(UT) + E(T )

--- ÷2+'n8 ) ~ 2 n+ 2  \(n +21)(.+2)

2 + 26ai

n(n- 1) 02
(n + 2)(n + 1)

Therefore, the unbiased estimator of variance (T - T) given by:

n(n+ 2)(n+ 1) (U T) 2  (U-TT2

n(n - l)(n - 1)(n + l)(n + 2) n - 1)

U- T is the estimate of the standard error of the estimator. If this
n - 1

term is small, the variance of the estimator is also very small.

Instead of assuming a uniform distribution (i.e., 8(1,1)) for the

local optimals we could assume any 8 distribution. If we assume
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n
{'e I have 8(1,2) distribution, similar calculations can be made

to show that the unbiased estimator of a (the global optimal value) is

T- U- T . 1 where C = n![-7/2
1 2 n + 1 n (2n + 1) In + 1/2

If the distribution is assumed to be 8(2,1) then the estimator of

a becomes T - C U T
n 2n___In + 1 Cn

A sequential sampling procedure can be used to estimate the global

optimal value where a trade-off is obtained between the cost of computation

and gain due to expected reduction in global optimal value. Assume C

to be the cost of finding one more local optimum. This is a function of

the number of iterations (on an average) to get to a local optimum and

the computing time per iteration.

The estimates of a and a + 0 when a sample of size n is obtainc.i0

n 0 n ). Ln0 n0

are _T n o and U+ 1 - 1 respectively (where U a,,d

Tn are values of U and T when the sample size is n). Assume that

the (n0 + l)st sample will have a uniform distribution between the

estimated values of a and a + 0 . Then the expected value of Tn +i
0is computed as follows:

Ito n no nno
) 0 0 0 0 0
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Let p(Tno+1) be the estimated density function of Tn Then

S= (no + )(Uno - T)

T Mx if c <x <T
n+i = = n
0 0

= T if T < x < a + .
n n =
0 0

U -T
n n

T U + 0 0
n n n-i
0 0 0

E(T n0+1) 4f - x-dx + T nT dx

n n n
T n- 0 -10 0n n-I

o 0

U -T
n n

n 2(no + 1)(n° - 1)

Therefore, given a sample of size n , one of the following plans can0

be used.

(i) Determine a function G(T) , monotonically increasing in T

which gives a measure of cost when the so far obtained minimum local

optimum value is T . We would like to have the sum of the cost of

computation and G(T) be as small as possible. Now the estimated

reduction in G(T) when the (n + l)st local optimum is found is
0

jG(T) - G(E(Tno+1 ))] and the cost of taking one more sample is C

Therefore the plan should be: If

(1) n
~ ~J( ... . - - 0r 0.. < CIl 'i'm~m~l~li IIm~l-lI iililm
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no further sample is taken. The best local optimum so far obtained is

n 0 n- 1)
accepted. Note that: E(T = T - o if

I U -T

G(T - G(T - 2 (n > C,n )no 0 (no 0 + 1 (no

then another sample is taken and the criterion function is recomputed.

The maximum number of samples N taken is bounded because (Un - Tn )
UN -TN

is bounded by e Hence, 2(N + U)(N -T ) becomes small for large N

making the difference between values of G(.) at T and E(Tno+1)

small enough to be less than C .

(ii) Define a loss function L(e) , a monotone increasing function

of e , which gives the cost incurred when the estimated expected

decrease in the global optimal value by taking one more sample

(i.e., T n- E(Tn i +1)) is e . In this case the plan should be: If

I U -T( n n

2(no +1)(n- 1) <C

no further sample is taken. The best local optimum so far obtained is

U T

n n

(n°0 + 1)(n 0 1) > C

then another sample is taken and the criterion function is recomputed.

The maximum number of samples N is bounded, because if the procedure

stops at N then.



72

L( N < C and N-(N)_2N ) > C

So,

UN- - TN-

N(N- 2)< <N- N-i e
- 2L-(C) 2L- (C)

(Since L(.) is a monotone increasing function and its inverse Ll(.)

exists.) Or,

U -T
n +l n n

N (N -2) < o 0 0
=n -1 L-1o L (C)

(where 8 is replaced by its estimator) N is bounded because N(N - 2)

is bounded. Hence, this procedure stops after a finite number of samplings.

This sequential sampling approach has been tested using C and L

as,respectively, an increasing linear functions of t , the average

number of iterations, and e , the estimated expected decrease in thc

value of T by one more sample (i.e., C = at and L = be where a and

b are specified coefficients). In the solution procedure the value of

a/b used is between 30 and 40. A comparison was made of this sequential

procedure with the global optimal search procedure (of Chapter 4) by

determining the computation time of the global search procedure and actual

error and computation time of this sequential search procedure. About 25

problems of varying sizes (number of nodes between 6 and 35) have been

solved using both the global search procedure of Chapter 4 (with

approximately 2% error value) and the sequential search procedure of this

chapter (using a/b - 35). The estimated error upon termination of the
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sequential sear,.h procedure was on the average around 3% while the actual

error was about 8 - 10% (casting some doubt upon our use of a uniform

distribution for the values of local minima). The computation time for

the sequential search procedure was around 50 - 60% that of the global

search procedure of Chapter 4. So, computationally, the sequential

search procedure seems to be attractive. However, we cannot compare

these two procedures for problems with a greater number of nodes because

of limitations on the global search procedure caused by restricted

computer memory size and computational speed.

'I
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CHAPTER 4

In this chapter, a solution procedure will be discussed which

converges to a value as close as desired to the global optimum. This is

a branch and bound method. The procedure is an adaptation of a general

procedure due to Walkup [W-l] and Falk and Soland [F-l] to our special

problem. The general procedure requires the solution of certain sub-

problems. These subproblems, for our problem, have a special structure

and we have developed special procedures to exploit this. Each subproblem

involves finding the shortest chains between all pairs of nodes. The first

major difficulty faced in solving a large problem by this method is the

limited size of a computer memory. Some ways to get around this problem

will be described in this chapter. The second major difficulty arises in

determining the upper bounds on the flow in each arc. An inefficient

upper bound is the sum of all the flows. Different types of heuristic

methods which yield more efficient bounds will be discussed. However, the

bounds are very critical, and choice of the wrong bounds may lead to

convergence to a nonglobal optimal solution.

4.1 Reformulation of the Problem

The proolem can be reformulated with the superfluous extra constraint

(4.1c) shown below. This constraint provides us with a range in which the

concave function could be approximated to develop a solution procedure.

This range I° defined below is critical for the effectiveness of this
m

procedure.

M

(4.1a) Minimize Z(Y) f (y )

(4.1b) Subject to Y V S

M
( 4 .1c) Y C H I °

m=1 m
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where

s I1[3 k k= = A.X. X. > r. , and >
Si ,j i>j k=1 j = and iA -- 0

and interval

I°m 0 ij
ij - a chain betweeni

ij contains
the arc m and i>j

At this point, the following definitions are useful.

4.2 Definitions

The linear approximation of a function f '() in the interval

I = [1 u is the function f () given by f linr(y
Im im t linm nm n

am + b m(ym - m ) where am = f m(1 ) and b = (f m(u) - fm (I m))/(u - m )

This is drawn in Figure 4.1. For a concave function

f linr(y ) < f (ym) in the interval I and f linr(y) > f (y_) outside
m =n m m =n m

the interval I
m

Linearization Error

The difference em(y [r(Ym) _ flinr(ym)]) is called the
m n - (

linearization error of fm(YM) at Ym . This error is nonnegative in

the interval I and nonpoqitivc outside The interval I
M m

4.3 Linearized Version of the Problem

In this procedure, instead of solving (4.1), a linearized version

of this formulation, given ii (4.2), is solved initially.

M
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(4.2a) Minimize Z'(Y) = [ flinr (Ym)
m=1

(4.2b) Subject to Y c S where S is as defined in (4.1)

M
(4.2c) Y C II 10

m=l M

where flinr( ) is the linear approxrmation of the function
m Ym

f (y in the interval I°

Let Ylinr be a solution of (4.2) and yOpt be a solution of

(4.1). Define Zlinr = ZI(Ylinr) , Zmixr = Z(Ylinr) and Zopt = Z(Yopt)

Then the following inequality is obtained

(4.3) Z linr < Zopt < Zmixr = Zlinr + E

M [ linr•I linr,
where E em(ylinr) and e . Y 's are linearizatlon errors at

mlX1 mf I

ylinr { linr 0o
= y for intervals I . The first inequality is obtained

m

because within Io , flinr( ) < f m(ym) and the answer is within Im m mN =

The second inequality is obtained because y linr is any feasible solution

of (4.1) and Zopt is the optimal solution. The final equality is

obtained because the extra amount E is the sum of all linearization

errors.

If E is small, then Z lin and Zmixr will be a good approximation

of the optimum value. The maximum value of E depends on the intervals

10's ; partitioning of these intervals into shorter one.! reduces the
m

maxIllutim possi ble value tof I, . The gi•.ler il pro• -tdtir, i lvty ,c\ ; s;olviq,

subproblems of the form (4.2.1), (4.21) s.Ibhje•(t to ýhIl -Iddilt ,101of rIu ::1v.Iia t

that the flow in each arc Pi Is restricted to lite in a e fied interval

DlinmU m At each iteration, two rew subproh1licns are ge'nerat(,d froin a
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given subproblem by dividing the admissible interval for one arc m'

into a left part [im,,ym,] and right part [ym,,um,] and leaving the

admissible intervals for all other arc flows unchanged. Hence, each

iteration adds 1 to the'size of the set T of subproblems where T

has the property that any (admissible by (4.1b)) flow pattern is

admissible for at least one subproblem. (If the flow happens to correspond

to a point of division of any one arc, it will be admissible for two sub-

problems.) At iteration p , the original problem has been partitioned

into p subproblems. To be able to uniquely identify a subproblem by

number, we number the subproblems as follows. Assume the subproblems at

iteration p rre uniquely numbered from 1 to p (such is the case at

iteration 1) If now the subproblem k is partitioned into two sub-

problems by dividing arc m' at y , the subproblem associated with the

left hand part [lm,,y] is numbered k and the subproblem associated

with the right hand part [y,u,] is numbered p + 1 . Let 1k 'p be

the admissible interval of arc m for subproblem k at iteration p
M 0 p M k,P

Then 11 1= U HI for all p If we say that the kth
m=l k=1 m=l msubproblem is solved at iteration p , we mean the problem

M flinr
(!-.4a) Minimize Z'(Y) = M mkinYr

m=l kp

(4.4b) Subject to Y c S , S defined above

M p
(4.4c) Y C M Ik p

m=l m

where flinr () is the linear approximation to the cost on arc mwee m,k,p Ym

1k,pcorresponding to m .

Bounding refers to obtaining the lower bound for each subproblem

(4.4); i.e., if Ylinr Is the sol]tioti for (4.4), then
kp
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zlinr = ZVylinr• is the lower bound. Define Zmixr = Y linr andk,p ( k,p / k,p ( k,p /

Z linr = Minimum {Zlinr• when p is the number of subproblems solved.sp k=1,2,.. .,p P ~

Then the following inequalities are obtained

(4.5) Zlinr < Zopt < Minimum +ZmExr< Zmixr = Zlint + Es~~p ~ k=l,., kp <=v k = s,,p s~p SOp

where E e mylinP) and lnr is the mth element of the
rnesp =i mYsp Ym,s,p

linr
vector Y

slp

The first inequality is obtained because each Z lin gives the
M k,p

lower bound for the problem in the interval H Ik'p and the minimum
m=l m

gives the lower bound for the entire interval, hence the lower bound for

opt mixrzo .The second inequality is obtained because each Z is ak,p

feasible solution of the main problem (4.1), hence Zopt is less than or

equal to it. The third inequality is obtained because Zixr is one of
slp

the elements over which minimization is done, and the final equality is

obtained because E has taken care of the linearization error. In
s,p

the branch and bound process, the maximum value of E is made small
sop

so that a good estimate of Z pt is Z linr . This above error can bes,p

made arbitrarily small in a finite number of steps as shown below.

Moreover, the following propositions make the branch and bound procedure

computationally attractive.

Prop!osition 4.1:

t may not bc nccessar) to 1,reak all the rectangles of a decomposition

down until tic maxinmum of tlie 'rror estimnate E for each oine is as
tP

sma¶ :is the dC ed~(( a.c'ur:acy of an an~swe'r, say E
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Proof:

If any feasible solution Y with the value Z° = Z(Y°) is known
zlinr

for the original problem (4.1), and if the solution Z of (4.4) is
k,p

linr 0suh that Z > Z , then the optimal solution cannot lie in the
k,p

rectangle 11 I p (because its lower bound has a greater value than
m=l

the value obtained at some other point). So, no further refinement of

that subproblem is necessary. In the procedure, the minimum Zmixr so
k,p

far obtained is taken as and at each step all the intervals for

which Z linr o Z 0 are dropped from further consideration. This
k,p =

procedure of rejecting some intervals altogether hastens the process of

convergence.1I

Proposition 4.2:

The procedure of the algorithm described below remains unchanged if

the restriction (4.4c) is dropped; i.e., the kth subproblem solved at the

pth iteration is

f linr
(4.4a) Minimize Z'(Y) = f mikrp(Y

m= 1

(4.4b) Subject to Y E S

Proof:

Let Ylin be the solutiou for this unrestricted problem and define

Zlin = Z'(Y lin d Zmix . Z(Y ) . (Notice the difference bctweenk,p k,p
linr linr mixr ]in lin mix

and Z and Y Z k The last r Is

dropped for the unrestricted problem.) Here Ylin no longer lies within

the interval so inequality (4.5) is. not obvious. However, in the
M

restricted problem the constraint is Y c S n fi Ik'p and in th,
m=l

unrestricted problem the constraint is Y F S . Since
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M
S H IkP C S , it is obvious that

m=1 m

Z lnr Minimum Z'(Y) > Minimum Z'(Y) Z in
k,p Mk,pM kp YESY F_ Sn E Ik'

m=l

The better (smaller) minimum is obtained when the search is done on a

larger set than on one of its sub)seI,. So, if Zlin Miniluml a r g e r ' ~ s o p k ~ , . p L k , p l

where p is the number of subproblems solved, then the above inequality

plus the first inequality of the chain (4.5) establishes the first of

the following chain of inequalities:

(4.6) Zlin < Zopt < Minimum {Zmix< Zmix = ;,]n + Es,p k=l .... zsp k'p s<
SP= = f ~ý= SIP .~ 3P sIp

Sinceal! mix
Since all Z are feasible, thi second and third inequalities

k,p

follow as before. The final equality is also valid becaus;e E takess ,p

care of the linearization error. Now the nmaximumi value of I is the

maximum value that the linearization error can have within
M fin in)
IT IsO p Because in this case some (ry u(mth element of yN ) 1mm;1

m=lm

not be within the interval., the errors corresponding to LhosQ are negative.

And for the ones which are within the interval the error is positive and

is bounded by the maximum linearization error of the interval. So, the

sum E is bounded by the sum of the maximum linearization error within
sp

the intervals. The proposition 'i.1 is also valid here because Zlin
• "k,p

does indicate at least a lower bound of the objective funct ion on the
M k

interval I1I 1m So, both the inequality chi in (4.6) and
m=1

Proposition 4.1, which arc neces5;ary ft'r the algorithm to work, are

satisfied In this cas'.i I
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If the restriction of bounds on flow in each arc is dropped, then

the solution of the unrestricted subproblem is accomplished by solving

for the shortest chain between each pair of sources and sinks with the

length of each arc equal to the slope of the linear cost curve and by

passing the entire required flow through the shortest chain. The order

of calculations in each step is N 3/2 where N is the number of nodes.

Moreover, when any particular interval InkP = i'p, u kJp] is subdivided

to ikP,r] and F k'P] where 1k'P < r < ukp ,then because of thet-m Jr L-m Jm m

concavity of the cost function the slope of the linear curve for [i'p],r]

increases and the slope of the linear curve for [r,u 'p] decreases as

shown in Figure 4.2. The two subproblems obtained by dividing the arc are

as follows:

(1) Solution of a problem where one arc length has decreased. Here

the modified solution procedure described in the algorithm can

be used to solve the problem in - N2 steps. Thus, considerable

computation time is saved.

(2) Solution of a network problem where the length of one arc has

increased. Usually, this requires solving the problem all over

again in which case the calculations are - N 3/2 . However, if

the same arc is divieed again and again, then use a very large

length for the particular arc and initially calculate the

shortest chain matrix and store it. Even though the arc length

has increased in a particular subdivision, it has effectively

decreased from the arc length used in calculating the initially

storied matrix. So, the modified procedure described in the

algorithm, using the stored matrix can solve this new subproblem

in - N2 steps.
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The algorithm is described in full detail below.

4.4 Algorithm

Step 1: (Initialization)

For each arc m , an interval IO = [O,u m] is determined. (Themm

determination of u , the upper bound on possible flow on arc m in the

optimal solution is difficult, and the convergence of the procedure

depends on how well it is obtained.) The linearized function Z'(Y) for

this set of intervals is formed and the unrestricted problem given by
_lin _fin i.,Mnmmo

(4.4a) and (4.4b) is solved to obtain Yn1 i Z1

Z'(Y) without the upper and lower bound restriction on variables) and

mix
z I (The subscript indicates that this is the 1st subproblem.) The

solution procedure requires solving the shortest path problem using Floyd's

algorithm between all pairs of points and passing the entire flow through
_inmix i e

the shortest path between each source-sink pair. Y in and Z is set

best best
as Y and Z , the best solution found so far. The information

describing the intervals is stored as the first and onlym 1

item of a list. Set p , which indicates the iteration number, equal to

1 .

Step 2:

Every item of the list for which the associated value of Zfin is

bestgreater than or equal to (Z - E) (where E is the permissible error)

is removed and discarded. If the list is now empty, go to Step 6.

Otherwise, select the item from the list corresponding to the minimum

lin
value of Z . Assume this Is the value found when the kth subproblem

is solved. From among the intervals described In the selected item,

choose the interval I for which the error e at the solution point iss
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maximum, i.e., e = Max f (ylin) - tmpym ( ]n)l and this intervals

i= [lsu ] is broken into two intervals 1l1 = [is,ylin] ands s

12 = [Ylintus] (The information about which interval should be divided

for each item can be obtained in the same step when the Zlin is
lin

evaluated, so that y values for all arcs need not be stored.)

Step 3:

Compute the linear approximation to the arc s based on the

interval II and leave all other intervals as in the kth subproblem.
5

sn lin ix
(4.4a,b) is solved to obtain Y , Z and Zmi Call this

~mix ilesta best best
subproblem (k,p + 1) . If Z Yx is less than Z y and• k,pl-I
zbest inmix

Z t are replaced by kp+l and Zkmix Finally, the description

of the intervals for subproblem (k,p + 1) and the value of Z lki is

k ,p+l

added as a new item in the list. (This step is an all-pair5; shortcst

path problem and requires N 3/3 additions and comparihons.) (All

other subproblems ((p - 1) at most) except the kth onc at this stage

will change its second subscript to p + 1 from p because these sub-

problems will be used in Lhe next iteration only.)

Step 4:

Step 3 is repeated using 12 in place of T . Call this subproblem
s 5

(p + 1 , p + 1) . However, here the length of arc s (suppose it

connects n and 1) is shortened to d n (This is b as definedni m
2

in (4.2) for interval I Here m = s and I = 1 . The new
m m s1

distances between any two nodes ij is dij

Min dil + d dnj d , dil + dIl + dij where d . is the shortest

(distance between I and j whici, the arc if not short ii d. (ilt, opt knal

solution is ob.aii'd with o lyv - N 2 cal • ,l i til;.
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Delete Zlin and the description of the intervals used in the kth
k,p

subproblem from the list. Add 1 to p and go to Step 2.

Step 6:

Stop. The vector Ybest is the feasible solution to the original

problem and its value Zbest is within C of the optimal value.

4.5 Remarks

Various options other than those given in the algorithm can be used.

The choice of the arc to be considered for further subdivision can be

arbitrary. Using the same arc again and again for a few iterations reduces

the storage requirements and can be done efficiently. Also, the sub-

division point, given an interval and an arc, can be the mid-point of the

interval, the point x where the linearization error fm(x) - flinr W

is maximum or a point which divides the interval such that the maximum

linearization error in each part is equal. The relative merits of these
1lin

can only be tested empirically. However, the use of yl as the point

of partition yields good results.

This branch and bound algorithm is equivalent to generating a tree

as follows: Step 1 produces node a and puts information about the node

Dn a list. Step 2 finds any pendant nodes of the current tree that need

3ot be considered further, flags them, and deletes information about them

From the list. If the list is empty, it stops. If not, it chooses a

)endant, unflagged node (call it node x) and creates two descendants of

'hat node. Steps 3 and 4 perform calculations on the two new nodes and

idd information about these two nodes to the list. Step 5 deletes

Lnformatton about node x from tho li:,t, flags node x and returus to

;tep 2. The algorithm terminates at Step 6 when all the nodes are flagged.
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At any stage of the algorithm, all the intervals over which linearization

is made and which are associated with the terminal nodes of the tree,

cover the entire set of initial intervals I0 and hence the polyhedronm

S.

Convergence Theorem 4.1:

Given any arbitrarily small value of E > 0 and assuming that each
1

function fm (y ) is concave and nondecreasing, the algorithm described

above terminates in a finite number of steps and correctly produces a

feasible solution with the criterion value within E of the global

optimal value.

Proof:

Solution of two subproblems is needed in each iteration of the

algorithm. Each of these subproblems is a shortest chain problem with all

nonnegative entries in the initial distance matrix. lienc,, each can be

solved in a finite number of steps (i.e., maximum - N3 steps, where

N = number of nodes). So, we will only have to show that number of

iterations p needed before we go to Step 6 is finite for a given E

and also that once we go to Step 6 we have found a feasible solution with

criterion value within f of the global optimal value.

Suppose in some iteration p we have reached Step 6, i.e., all the

pendant nodes of the tree (all p suhproblems) are flagged. According to

best I i n
flagging rule Z < Z for all values of k (I.e.,flaging ule best • <k,p

k - 1, ... , p) . Since all valucs of k cover the entire, feasible region

'Noe decreas|ai. pi-,peity i:; i.,'e-..try Ilm . be..tt;rc it e,: .1,I I.. ht

con(i nuity of the func'tloi o t th, right halnd ! toi-d.iry, whith k i i. .d. ho
the proof. Also, this plopc it y ;u,•. t ct. 'I. t !IrIt -I l t he ('11ri• .l . o( 1 hb '

distance matrix used to solve th. shortest pa|th probitn aie 1oimiegati,"t.
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0 p k p)i.e., iI U H IMk- of problem (4.1) and Z is the globalSMac 1 k=1 m=l

iptimal solution, then inimum lik < o , and(M k k,p )
,best E< inu zlint <Zopt bs

b -M k M k,p{z , } so we have obtained Zbest within

r of the global optimal solution.

Therefore all we will have to show is that we go to Step 6 in a

inite number of iterations p for any given E > 0 . Observe that the

unctions are concave and nondecreasing, hence they are continuous except

ierhaps at zero flow value (where there can be a jump). So, except for

.ntervals in the neighborhood of zero (which we consider later) the

inearization error em (-) for any interval [y mym + I ] is bounded by

he following inequality:

e (-) I (f (Ym + I ) - fm(ýYm < (D + fm(y M).IM
m m m M uMm

here D+ aenotes the right hand derivative. The first inequality is due

D the fact that f (.) is nondecreasing, and the second inequality is

,e to the fact that f (-) is a concave function. The right hand

ýrivative D+fM (f ) is finite except at ym = 0 (shown in Appendix D).

)w at each iteration one of the intervals is partitioned into two, so

)me I decreases. If we can show that by repeated partitions of an

iterval, I M- 0 , then e (-) will become less than C/M in a finitem in

umber of steps. Consequently, the total error satisfies
M
I e (-) 1 E at some fin16e number of iteration p for all k

Minl ln op mf< . Z bet
.nce from (4.6) Z < = < ,...,p Mnk,pm

ix= Zlin + E and since tota, error E is bounded by c
,p sp sp s,p

est <zlinb +lE or, b e < Z < " • k = 1, ... , p because
s,p s,p = k,p
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1 in iZ is the minimum element of all the Z So, in finite number ofs,p k,p

iterations p all the pendant nodes satisfy the flagging criteria. Hence,

we reach Step 6 in a finite number of steps. We now consider intervals

containing 0 , then to complete the proof we show that 1 -ý 0m

The bound e (,) < D+f (y) I is not valid for an interval I
m = m m m

with left hand endpoint 0 if D+f (0) does not exist. It appears thatm

we might find ourselves reducing the length of 1 without reducing the

linearization error at the point of division ym below the amount of

discontinuity at 0 . This could happen if y ÷ 0 . But the procedure

guarantees the flow value on each arc is either zero or at least

r = Minimum {r.. So, such points do not exist.
ij-r. .>0 l

1J

The only other possibility for the maximum linearization error to

remain large for some interval ] In subsequent partitions is if the
5

partitions are always very near one of the bound;iry points (i.e., one
I decreases very little in each iteration and approaches a nonzero

s

limit). But, in -his case, because of the continuity of the cost curve,

the actual error es(ys) at the point wher- the interval is partitioned

eventually becomes < C/M . (Because close to the boundary point where

the linearization error is zero, linear approximation and actual curve

are close together.) Since partition is made on an arc s such that

es, (s Maximum {e }(y , the total actunl error
m

Ek(p I=l• e =(Y < M-es(y) i,; < f where es (ys) < i/M . The values

of Z and Zlin for thiý; subproblem is very close, so they will he
kp k,p bet- Zln (teas best nmix

flagged off by the rule Z best(ecause Z < ZkMp
=k~p =k,p)

zlin + F best lin 1 and C ) . ThereforC, wCk,p +kip ok,p k,p ,p

cannot have repeated occur rICce , :mall chn -'Mal of t'l-e rors. lie- ce, no

interval of maximal error call he repeatedly sutadivid'd , yet its , tg icth not

approach 0
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Therefore, for all cases, given arbitrarily small E > 0 number of

iterations p is finite and we get a feasible solution with criterion

value within C of the global optimal value.,1

4.6 Difficulties in Using the Branch and Bound Procedure on Step Functions
with Decreasing Step Size and Constant Interval Between Two

Consecutive Steps

The rule of dividing an interval of an arc at an interior point

(flow level) might, when applied to step functions, give rise to linear

curves which have higher values than the original cost functions within

the interval of interest, as shown in Figure 4.3. So, the solution using

linear approximation does not necessarily give a lower bound on the total

cost and the procedure is inapplicable.

The above difficulty is avoided if the division of intervals is made

at the nearest point of discontinuity (i.e., at B instead of D in

Figure 4.4). Then the linear curve does represent a lower bound within

the interval. Each subsequent partition reduces the error value. But if

the restriction (4.4c) is dropped, as it is for our algorithm, then for

some points outside the interval on which linear approximation is based,

the linear approximation curve lies below the original cost function

(shown in Figure 4.4). While working with interval OB , a solution can be

at flow level C and will have a positive error e . This point C can

then be a candidate for further p.nrtition of interval OB , but this is

impossible. So, for this method to be successful, the restriction of

bounds needs to be maintained, and thus one of the advantages of our

algorithm is lost. Even in case the interval bounds (4.4c) are maintaLined,

the points where partition can be made are restricted to points of

discontinuity. So, the reduction of error beyond a certain level will

not be possible, and depending on the strLcture of thc problem this can

be quite high.
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This problem can be soLved by using any arbitrary small E error by

the modified method suggested by J. E. Falk and R. M. Soland. As shown

in Figure 14.5, wnere D is the point ef splitting of the interval

[O,u] , the cost functions have open left and closed right hand intervals
2

for each step. So, it is a lower semi-continuous function. One can
define a function fc(.) for each f (.) , which is a convex envelope. 3

m m

Thus, the subproblems are convex programs and of considerable difficulty.

Convergence is guaranteed for any small E (not necessarily finite

convergence) and proved in Reference [F-li. Due to the unavailability of

a simple convex programming code, this procedure is not tested computa-

tionally.

4.7 Limitations of the Algorithm

The two major limitations for this procedure are as follows:

(a) To start the procedure, we need to specify the upper bound on

the flow ii, each arc. One of the trivial upper bounds is the sum of all

the flows. This can be very large and if initially we start with this

large upper bound the error value is large and it will take a considerable

amount of partitioning to reduce this error to a small value. Ideally,

if we co,]d start with the upper b,,und at slightly more than the optimal

value, we would get quick convergence. However, there is no theoretical

way to determine such bounds. At the same time if we assume too ]ow an

upper bound the algorithm can yield a wrong answer, as will be evident

2Definition: Let y 0 C . Then f(.) is lower semi-continuous at y

if for every E > 0 there is a 6 > 0 such that if ly - yHll , 6 and

y c C then f(y) > f(yO) _ E . f(') is lower semi-continuous on C if
it is lower semi-continuous in each y c C

3Definition- The highest convex function which fits below f (.)m
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from an example discussed below.

A procedure for generating upper bounds on arc flows that we have

tested by computation is as follows: Let the length of the arc m' for

which the upper bound is sought be zero and let the length be f m(r s)/rSL

for every arc m # m' Here r is the minimum, nonzero, specifiedst

flow requirement r.. We use r t;since if any flow uses an arc, the

flow will be at least r and the simnller the flow the higher the costst

per unit flow, i.e., length. Find the shortest chains between all pairs

of nodes i j . Send flow r.. along the shortest chain between i and

j for all i j 9 r.. > 0 and use the resultant flow on arc m' as the

upper bound. While making arc m' free and every other arc as expensive

as possible might appear to give maximal possible use of arc m' , che

following example shows that it may fail to do so. It then might bc hopod

that if the upper bound so generat.d fails to be large enough, the

resulting solution given the bound will be at the bound (which c;an then

be relaxed), but the examp] c shows even this is fa]lse. In sp itC' of thii;,

it seems a reasonable hcuristic.

Exapl e:

Consider a three node network with requirements r 1 2 = I , r 1 3  4

and r23 = 1 and cost functions as shown in Figure 4.6.

Upper bounds using the procedure are 12 2 , V 5

Tt-.. lbczt suluLica -c.ji', I tI$ ,.est i,'uld:, is ( 2,Y13,Y' -- (1 ,1)

with total cost = 5.1. Hfere none of the flow is at its upper boundst, so

the bounds WOI.)ll b'rC l~xd Ihowtvcrl, actiial minhimm~ ('o.;t ;,u i•li

(yl , 1 Y1y) 3 ) 1 (',,O,',) with tof .I c ,t 1.8.

E lH p il ic.ll .vidr'nec g IvcI11 I'Y .! IV (-))" tilh , 11'1 1, .'.11 ti I h d i n 11,1' 1 11 .1t4 ,

of upper bounds . ;ihows thait c'v•nrV'm'u cI r;tc for i g'iv, n pildol ll is v'lo y

much dependent on how small an upper b 'ind is us;vd fo' tiho f 1OPw'. o thC,
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ares of the network. It seems that these effects are insensitive to

network structure and flow pattern (i.e., disimilar networks tend to show

a similar ratio of improvement when better upper bounds are used).

(b) The second limitation of this method is the core size of the

computer. As the tree grows, in a large problem, we need to keep in

store a large amount of informationt specifying the qsts of intervals

corresponding to pendant nodes. Moreover, to take advantage of only N2

calculations for the arc shortening subproblem, we need the shortest

distances as well as information about the paths. So, for each node of

the solution tree, three matrices of size N x N (N = number of nodes

in the original problem) need to lie stored. Since interval bounds are

integers, we can pack the information as one bit of information and use

the upper half of a matrix to stor,' it, and use the lower half to store

the distances. So, the number (if natrices can be reduced to two Piatrice:;

of size x' x N . When k pa rtitiotns are made, the total numbt of

matrices is 2(k + 1) . If nothinn,, has been block-ed, then the totaJ

number of core locations required is 2N (k + 1) . 'iis can bc very Largc

and often exceeds the core size of a fairly large machine, even Jor a

network with only 30 to 40 nodes. Instead of storing, all the above

information in the core, two thing!; can beC done:

(I) As soon as any set of m,,trice ; is generated, it is kelpt in a

disc file. In the test ing, an unbuffered binairy rao ,,.: diiC

file is used to mtore this inform.ation. Bv writilý,; ;iih

matrix on a set of pag.ic; ;niii go)in, directly to tihcO,t ,.,,s lt

reading it when n' .dcd, conivid•,rable time. can I,( . ,d. TlI i.

was ;i1tte:r.pt'd witlh a 35 Miodi network using, t p., . tL- wr-it

each mat rix. Tht diad.,,itt.go of this inctliod is tic v, s.. i -

able t in' is wani tcd ill l l". ' and vi'r i i t• tihl', , .lt iv i .
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(ii) Instead of storing the information in matrix form for each

unchecked node in the tree, we could simply keep track of the

path and keep the information about which arc is subdivided

at each node and at what point. Then at any step all the

interval information can be calculated by tracing the path.

This requires no storage on disc files. The subproblem where

a particular arc is shortened cannot use the modified algorithm

because no information is stored. Moreover, when the tree

grows considerably, a substantial amount of computation has

to be done for generating the interval information needed. So,

the saving in disc file reading and writing is offset by

computing time, and this method may not be very efficient

either.

For large prob 1 ems, the best procedrr .iiis ute be a cobniatlli itio of

the above methods. For a few stages, path information is used to generate

a matrix and then the disc file is used to store the matrices. Thus at

any poict not too much calculation is needed to generate the interval

information and disc reading and writing is not too frequent. (The time-

shared interactive computer program developed by Stanford Research

Institute named TREE (Reference [N-1]) is good for this type of work.)

A program has been written for the branch and bound procedure for a

network of up to 35 nodes and a number of problems have becn solved. T)iv

program and a brief summary oit data on solution of the sample probl em.s

are listed In Appendix It.
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CHAPTE.R 5

In this final. chapter, a post--optimization procedure for problems

with discontinuous cost functions with decreasing step sizes (Figure 1.3

of Chapter 1) will be discussed. Also, a variation of the problem in

which the requirements vary in different time intervals will be formulated.

Finally, the scope of possitble futire research will be outlined.

5. Post-Optimizat ion Procedure

Both of the methods discussed in Chapters 3 and 4 assume continuity

of the cost except at the left-hanU extreme point. However, most of the

practlcl proi.lems enrountered do not have continuous cost functions but

functions of the form shown in Figure 1.3. To obtain a solution to this

problem, the discrete points cons ttitting the actual cost curve are

approximated by means of o cont inuýut,:s nondecrc,.iring concave curve. S i n.C

tile approximating curve is nojdecr,;s ugin and concave, it if; coii.nt iuolo;

everywhere except at the left-hand extrcme point (as shown in Appendi> 1)).

(Ideally, the continuous nondccreaý;ing concave cost curve g(y) im-hoold be

such that, if f(i) is the actual cost of i channels, and ýf u is tie

u
maximum number of channels possiblel the ,absolute error j f(i) - g(m

i-O
should be minimized over all g(y) . However, this is itself a ditficult

and unsolved problem. So, the ideal1 case cannot be achieved, but

represents an area of poss; ible futirt, research.) Then the, mc thd of ct t licr

Chapter 3 or Chapter 4 can be applie'd to obtlaill thin approxim.itti S, iso ution

of this modified problem (i.e., wi li nonmdecrea.;ing c•cn;iv c,,t fun:t ionyll.

Filioully, the lnJowllmig somewlihat arlhiltr.-ry locala imprvi (mcat procidirc (in

be used to oht, t in an approx irmIte ,'c ,t ion of thk origillal diSrct, tt

variable problem. Some rcasons for choo. inri thisý particilar prc(,dur,, will

he discuss;ed in the reniarks; fol lot, ira:, he prociiurc.
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Assume there are n source-sink requirement pairs, and numl~er these

pairs arbitrarily, from 1 to n

Algorithm:

Step 0:

Let i= 1

Step 1:

Let y be the flow in arc m in the current solution to :|1w

problem. Consider the ith source-sink pair. Find the chain, c; '1 it

chain P , through which the entire flow of the source-sink paiL i was

passed in the solution of the continuous approximate problem. (Both the

procedures of Chapter 3 and of Chapter 4 give rise to a solutiot with a

single chain between each source-sink pair.) Let w equal the largestm

flow value with cost less than the cost of flow y . Let

t = fm (y)- fr(w) . For each are m r P ,let Z = Y1- w (sec

Figure 5.1). (If the required flow between any source-sink pair is

integral (assumed here), then the flow level y in every arc is also

integral (as proved in Appendix C). Hence, f m(ym ) is defined. Also,

C , defined below is integral.)

Let Z = Minimum {m} = .Z , Then reduce the flow in chain P for
MCI,

source-sink pair i by amount Z . This guarantees a reduction of the

cost by at least t, (possibly more because there can be more thai4 one

arc at which the minimum is attained). If 7 is greater th.in existing flow

in the chain P corresponding to tth pair, go to Step 3.

Step 2:

For the restulting flow patturn, determine, for all m , the valueu

called C , of thi.' amount of l,,w that can be sent thliough an arc m
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without incurring any further cost (see Figure 5.2).

Using C as the capacity for each arc m , find the maximum flow

F between ith source-sink pair by the Ford and Fulkerson max-flow

labelling algorithm as refined by Karp and Edmonds [E-1]. (The network

considered here is undirected and the labelling algorithm mentioned above

is for directed networks. So, it is necessary to convert the undirected

network to a directed one by replacing each undirected arc by two directed

arcs of opposite directions. From now on, all chains will be referred as

paths because they are directed.)

If max flow F < Z , then restore Z amount of flow back to the

path in Step 1.

If I > Z , then further reduce the flow in the path determ ined in

Step 1 by amount (F - Z) . Send amount F of flow through the paths,

determined by the max-flow algorithm.

Note:

The C value for at least one of the arcs in the path traced in

mm
Step I is zero (at mn' where mn' minimizes Z ) . So, the. pa thF; obt ai ned

by the max-flow algorithm do not contain the preVyouls path.

Step 3:

Add 1 to the value of i . If I < n , go to Stcp 4. If

i = n 4 1 , let i = I and go to Step 4.

Step 4:

If F < Z for n consecutive steps, then stop. If not, go to

Step 1.
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Theorem 5.1:

The algorithm described above terminates in a finite number of steps.

Proof:

The finite termination of the algorithm depends on the finite termina-

tion of any sequence of flow reduction steps and the finite termination of

the max-flow algorithm in Step 2. Since all of the capacities C at anym

stage are integral, the refined procedure of Karp and Edmonds will yield

a finite bound of (1 + log c/c-F) for each max-flow problem where c is

the maximum number of arcs across a cut-set and F is the maximum flow.

in Step 2, if any flow change takes place then there is a decrease in

the total cost by at least the amount of the smallest discontinuity in any

cost function, since it does not cost anything to send the flow through

the alternate paths found by the max-flow algorithm. The monotonic

decrease in cost guarantees no cycling. Only a finite number of improve-

ments is possible since the total cost is bounded below by zero (i.e.,

total cost > 0) . Also, if no improvement is obtained n times

consecutively, the algorithm stops. Thus, termination of the algorithm is

achieved in a finite number of steps.11

5.2 Remarks

The f llowing remarks are pertinent to the above procedure:

(i) This is a procedure to be used after a flow pattern has been

found by the method of either Chapter 3 or Chapter 4 based on

a continuous (except at. left-hand extreme point) approximation

of discrete cost data. Thre is no guarantee that we will

obtain the global optimal point for the discrete problem. The

concept of local optin-il v. lue Is not applIcable here because
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the variables (flows) are discrete.

(ii) It is not apparent whether we could have obtained more

reduction in the cost by considering source-sink pairs in a

different order.

(iii) For any set of source-sink pairs, some flow may be diverted

from the initial unique path to one or more paths found by

solving max-flow problems. Yet Step 1 considers only the

original path and not the deviations determined by previous

max-flow solutions. These other paths are not considered

because the flow in these paths is generally small compared to

the flow in the original path. Hence, the minimum reduction

Z (obtained in Step 1) may be more than the flow values of

these paths. Then, no cost improvement could take place.

(iv) In Step 3, if F < Z , then no improvement, with respect to a

given source-sink pair, in the total cost is possible using

our algorithm. It is possible that an improvwment can he

made by using flow increases greater than C W. Whi Ie them

rerouting is then not free, it is possible that F cami bc

made larger than Z at a smaller cost increase than the

decrease we obtain by reducing the flow in P by the amount

F . To do this, we have to consider the relative sizes of

steps in the cost functions. This is a rather involved

procedure and was not attempted here.

(v) The values of Z and Cm depend on the width of the steps

in the cost curv, (i .e. , the difference betw'en I hVw values at

two consecutive ý.tcp:. in the ('o ,t curve). Thc v. ,1 1 f t of

depends ou the hicight of thet steps in th, ( osLt fuict i,,n.
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There is not much improvement possible if step widths and

heights are very small--so, in that case, this procedure is not

advisable. In case the cost functions consist of a few big

steps, this procedure tends to give reasonable savings.

(vi) In the case when the cost function is similar to Figure 1.4,

this procedure can be applied with the redefinition of Zm

and C as shown in Figure 5.3.m

5.3 Future Research Directions for This Problem

The most promising theoretical direction to pursue in solving the

general network synthesis problem with continuous concave cost functions

seems to be the cutting plane method proposed by Ritter. In this method,

each local search procedure should be a simple subproblem (such as a

shortest path problem), and the generation of cutting planes to exclude

local optimal solutions vithout cutting out the global optimal solution,

should be simple enough to be handled easily, even for large problems.

To make the procedure of Chapter 4 attractive, it is necessary to

find a good upper bound of the optimal flow in each arc. Research toward

finding a reasonably good method could prove fruitful.

Finally, research seeking better methods of generating a good solution

of the discrete cost problem, given a solution of the continuous

approximate problem,may prove worthwhile. But the problem is very

difficult and the procedure will. almost certainly have to be heuristic.

5.4 A More General Research Problem

A somewhat more general, and realistic, situation than discussed

earlier is the case where the requirement matrix changes owr differezit

time periods. The capacity should be built, at minimum cost, at the start
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of the process so as to meet the requirements for all succeeding times,

using different routing during different time periods. The programming

formulation is given as follows:

k
X ij(t) = A vector of dimension P where its elements x (t)

represent the amount of flow through the kth chain between

source-sink pair i j at time t .

A.. = M x P.. path-edge incidence matrix, whose (m,k) element is

1 if the kth chain between source-sink pair i j traverses

edge m or 0 if it does not.

Y(t) = I AijX ij (t) = An M-vector where element ym(t) is the

total flow in edge m at time t

C = An M-vector where element C is the total capacity necessary inm

edge m such that it meet.s the requirements for t = 1,2, ... , T

time periods.

Here we have to minimize the total cost Z where

M

Z -- f (C)
m Mml

Subject to C > y (t) V t = 1,2, ... , T and for all arcs mm =

P i

I x k (t) > r (t) for all source-sink i j and all t = 1,2, ... , T
k=l i = ij

k

x k(t) > 0 for all t and i J.
ii

In this formulation, the number of variables has increased enormously.

An efficient solution procedure is not in sight and can only be found if

the problem of this thesis is solved first.



107

However, an even more complex problem faces the telephone company.

The requirement matrix changes over succeeding years and can be forecast

at the beginning of the planning period. The cost of rearrangements

(i.e., dismantling the facilities between certain nodes and putting them

between certain other nodes in different periods) of facilities is also

given. An initial network has to be synthesized which will meet the initial

capacity requirements. Additions and rearrangements in succeeding years

must be planned. There may also be yearly budgetary constraints. All of

these must be solved in such a way that discounted total cost over several

years is minimized. This problem is much more complex than the one

attempted in this thesis and a heuristic solution procedure can be a

challenging extension of this work.
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APPENDIX A

AAS 128 P2/V1/772

5C LANGUAGE: FORTRAV FOUR, GE 635 ('lARK TWO) COMPUTER
17C 132 K MACHINJE, I MICRO-SECOND MEMORY CYCLE
15C SIMILAR T) IBM 36"-65 OR CDC G44f.
2.?C PROGRAM FOR A LOCAL SEARCH ALGORITHM OF SOLVI'NIG A
25C MULTI-COM"MODITY FLOW PROBLEM UNC)ER CONCAVE COST.
3?,C GIVEN FLOW REQUIREMENT MATRIX R, COST MATRIX K
35C COST OF F(I,J) FLOW ON ARC (I,J):K(I,J)*F(I,J)**?.
40C N:=UVUI3ER OF NODES IN THE INETWORK.
45C IdPUI` DATA FILES SHOULD SUPPLY VALUES OF R -t K.
50 FILEVAME I DATA
55 INTEGER R(34,34),C'{(34,34),C(34,34),F(35,35),S
GO I NTEGER Y
65 REAL K(34,34),D(34,34),CO(34,34)
7t' 1l1 FOPNIAT (5X,FC).2,15)
75 21 FOR'lIAT (5x,F' .3)
SO 3C• FORl AT (13,/4X,13,14)
85 40 FORMAT (3X,13)
90 5 0 FORMAT (213 ,14)
95C SUPPLY THE I'IFO'I3ATIO'N ABOUT 'N,?,INPUT FILE,
10TC VALUE OF COEFFICIEFNT OF CONVEX COMB.I:AIION 3
I115C ArND I:NITIAL N'JMUN3ER OF SAMPLE NO.
I I PRI T ," 7 Z,7 DAT A,B, %0"
115 I1'PUT,N,: ,Z.JA7A,B , NO
12 f. 141 = N- 1

125 DO I I, I:1,%I

135 DO I' J: I Il, N
140 1•? READ (ZDATA,I-) K(IJ),R(IJ)
145 PR!' T, I ,J ,; ( I , ) ,R (I ,J )
15rC STARrI" G i%'- l A POINT
155 S:f ; IT'HAC:,•
I1Gf, 15;1, g:=`; l

IG5 D) 17T,, 1:1,'di : 11=1+1
17f. DO 170 J=I1,N
175 IF(K(I,J).Li. IAr ) GO TO 1r7
Igt )CI,J)= l~r : f7 TO 17?
185 167 Y:RRAY)I.•) ;X:R'D(I.7,)
19 e F( 1,J) ( I i• + i•,kY)

195 PRIN'T 5F,I,J,F(I,J)
I• D , J):7 K IJ)) (F( IJ)* (IZ)

2 F5 1 7 9 D(JI): IJ)

2)1C CP1EATI N0'4 OF I'ITIAL CH! I,J) 'lATRIX
215 26r DO 27. I:I, N
2.If, DO 2711 J: ,IN
225 271' CH(I, J):J
23r DO 3f n I:I, '
235 30?. D(I,I):l

24e.C STARTI'N3 OF ITZHATIVE PROCESS.
245 ITRA:•;NC3V:g;NCD:Z
25?)C CHEATIO'; OF C(I,J) MIATRIX
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AAS 129 02/17/72

255 469 DO 45,0 I:I,N '
26t DO 450 J : 1 ,S " ',

C) &C
265 45C C(I,J):J Ia o
27CC FINDING THE SHORTEST PATH e
275 DO 5! N IN H Co

201 DO 50I I:I,NI
235 I 1 :+ 1
29F IF(D(I,M) .GE. 1009) GO TO 50r
295 DO 5,10 J:II,N
300 A =D (I ,•I)+D ( N,J)

305 IF (!)(I,J).LE.A) SO TO 5-C
31 V D(I ,J) : (0,1 ',)+D (C ,JI )
315 DCJ,I):D(I,J)
32 0} C ( I ,J)=C( I M.")

325 C(J, I) :C(J,I1)
33ti 5?! CONTINUE
335C CHECKI NG F OR CONV RSE\'CE
34t ICHE:=
345 D0 52v, I:,=1
355t DO 529 J:1,N
355 IF (CiC(I,J) .EO. C(I,J)) GO TO 5 10
360 CM(IJ )=C,( IqJ
365 GO TO 520
37, 51, ICHE-ICHE+I
.375 520 CONTINUE
3 ?, NCHE:N*N
385 IF(ICHE. EQ. NCHE) NCO:2
39r IF(IC}CE .EQ. NCHE .AV4. S.EQ.I) NC V:2
395 IF(ICHE.ZO. NCHE .A''J. COSTT.GT.C 0T) T'COV:2
UeC UPDATING THE FLOW "1ATRIX
V45 DO 55 = I-,I,NI
41P, II:I+1
415 DO 55M J-: Il, V
420 55ý F(I,9J)=?,

425 IF(NCOV .E). :1) GO TO 555
43C PR I N T, "FR O1,R T, r, FL O4"
435 555 1)O () 1:iNI
44, II=:I+1
445 D) 6 @7 J-II,N
450• IFCR(I,J).E '. 3);i TO S
455 IF (NCOV.PE.R)PRINTT 3?',1,J,R(I,,J)
46P, X:R=I,J)
465 Y:I
470. 560 L:C(I,J)

475 IF (I.ST.L) GO T) 57?
4R8 F(I,L):(I,L)+X
485 GO TO 5-?
49 f) 57M F(LI)=F(LI)+X

495 58F IF (L.EO.J) TO TO 599
5f, IF(NCOV.'qE. P PRi-,r 4?,L
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AAS 128 #1217/72

565 I L
51 ? GO TO 56o
515 59! I:Y
52Z 7 P COnJTINUE
525 IF (CJCO .Eq. 2) GO TO 75
53* IF ('C OV .EQ. I) 4COV: 0 ,
535C CALCULATION OF NEW DISTANCE MATRIX
54t COST ='
545 DD 70e I:I,=10
55? 11:l+1
555 DO 7 J J:=I, -
56? COCI ,J) :(K (I ,J) )*( (F(I ,J))**Z)

5G5 COST:COSr+CO(I,J)
57? IF (F(I,J).E?.I) F(I,J):I
575 .( ,J ((* I, ) / ( ,J *( - ) * +( - ) D( , )
56r) D(J , 1 -3('AJ)

5?5 7F C3tTIPLUE
59F PRI,!T,"T)TAL COST:",COcT
59 5 ITPA=ITPA+I

G! GO TO * 1 ,
-i'5 75 0 PRI 'JT,"CO'VER3E NC F AT I TEHAT 10N V0 1- ",ITrA
SIr ITHAC:ITRAC TITRA
615 IF (S.GT. I)iO TO 7qf
)2? Co:-Tr=zC::-YT : COSTU-COe3T

625 gS) T) I ';,
653 7R% IF (C;,$TT .G?-. COSY) CY`TT:C9ST
r-35 IF ( COSTIJ .LT. CO/T) )OSTU-C):CD;T
G4fl IF (S.LT. T')) GO T 5f,
645 PRR- ,(CJ5T'T!-C03TT)/() - I)
65; IF (S.F ,• . 41 ) % O- TO ,
G!5 C': I TRAC/C

P • . I , 4 ,- "H'.•:", iR?,? "C"1:" ,C'1

f5i.C U 0PPL Y T { fTI;-" I I ' I .'F TI!- LC.1" FUTJCT J ,.t )
(7?c' C§JT T I ,C07 FUN'CrII•,.

I ~T
Ir ' r', ') , ?,..

6"3 ;'5, "'"(( L,' <-_ 'T•. r (C J!-r• tSi" T I P•'r"

S...", , ( .7,. "") 7) Ti IP"'

7 TD lT z
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AASBR I e/g

5C LANGUAGE: FORTRAN FOUR, GE 635 (MARK TWO) COMIPUTER
10C 132 K fIACHINJE, I M1ICRO-SECOND %IEMORY CYCLE
15C SIM1ILAR TO IBN1 36e-65 OR CDC 64!Vf.
2 CC PROGRA"I FOR A GLO34L SEARCH (BRANICH-BOUND) ALG9.RITHM
25C OF SOLVING A MULTI-COIY100ITY FLOY PROBLE'l UINDER
3rrC CONCAVE COST. GIVEN FLOW REQUIREMENT NIATRIX R,COST
35C M1ATRIX KS, N=N-U-3ER OF 14ODES IN THE NETWORK, COST OF
4rC FY(1,J) FLOW IN ARC (I,J)=KS(J,I)+KS(I,J)*FYuI,J)**7
45C INPUT DATA FILE SHOULý) SUPPLY VALUES OF R k V.S
50 COMNON DY,DX , FY,R CY C,C,N, NE,K L
55 REAL DY(35,35),D'X(35,35),ZAc 1!!),ZL( 1!r,KS(35,35)
613 REAL D(126!)F
65 INTEGER Sc 1rf) ,KE(IFM),LE( 1!) ,CY(35,35 ,CX(65,35),fr'I
7t INTEGER C(1264A)
75 INTEGER R(35,35),FY(35,35),LB(35,35),F( 1F7)
gt FILENA4IE ZDATA
85 Ir~ FOR'1AT (5X,F9.?;,15,F9.2) 

6RetrOd(, d r9C 2r FORM1AT (13,4X,13,14) CO v
95 3! FORMlAT (3X,13)a leC1y
109~ 32 FORMAT (I7,FI,'.2)
195 34 FORMIAT (17,2F1P.2)
11!C SUPPLY THE VALUES3 OF N,,IM1PUTFILEN'1J31R OF PAGES
115C FOR E-ACH DATA .3LOCK(:NýUidER OF VARI43LEi:/615)
12' f PR T NT, "A) Z Z:)ATA , 'P
125 IN4PUT , N ~Z 7DATA, '.P
13!r N I=N- I -. R,,: I ;', r!
135 DO I r1 = I1,N %11 : II +1I
14r DO jeo J=I],N
145 READ (7DATA,1f ) IJ,(TJ,5JI
15 t 1Iv.- IFU (P (1 . .-,1. f) .4~N") (RCI ,J .L-E.RM) )t RI J)
155 DO 151) rIl, 1;1 11 :1+1

165 I F (K S(IJ )LT. I ff ! ) G TO0 121'
17!1 DY ( IJ=I :?,7t
175 CO TO 150p
IFr, 129p 'Y( I ,J) :((J I )+K 11I ,J)*ctM**Z /R,f)
185 I 5r 9Y(JI)::)Y( IJ
19 t DO vI rS I 1N

2r.5 NE:!r
21 C CALL SHORTErST
2150 OBTAINING" Jr)J'4)S ON' FLOW ON EACH ARC.
22!0 DO 3f! K=l01-, KI:K+l
225 DO 3Cr L:KI,N
23f IF (K(Kff~ 1?) GO TO 29P
235 OX(K,L)=:7
24f CALL ARCHANGEF
245 R (L, ) :Y(K, t-)
25!E DY(V..L):(KS,(L,x)+Kosc<,L) )*C(R!(L,K) )**7)l/R?(L,K)
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255 0'j TO 3.:'?

P-7rC STrnTI1'Y; 1F 3R4.CK -t ~3O!PJl: t'lOC7-UR-
275C CRE4T1V( A RAýVl3'1 31NAIRY FIL.E TO S3TO.E Tl'V ¶D4TAS.
2FIF OPE'JFILE T(*~~,I,5~?
28,5 CALL IF 3:%-AW(ý751)

317 CALL SHOI3-',T:
R 5 IV) 33-!11,7 ~ ~ 4Q

325 Sý(I ) =5 I - 11 :,I
332 L, 10 ,J):H;A I I, I) II I+Ie1

3,15 ') .1135'r "i I,
3 0' J:L2I JT) ('iý1)/')

35? 1K 1 % U) T+ 1

M r I i P 2 1 'kls

*37F 1y(: I ):i)V P d

435 ) j 15 1YJI!J

'l1 f ' j 4 : K j T 2C I / ) + :1
3975 1i T= 515!* J
4~' r C Y (I J )F'
4'5 '21 ' J+ ) I :
41 r , 3~' (J, I )t4 ( N: '~I) ) 1

15'' LJ C Y 1,)' I J ) L'iJ ) 17'" 3.
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5W.5 1F(L3(J, I) . 0.)•..) :) T 1 51/51t r Y (I ,!J) :ý '; IJ) (L3(1,J)* -L 3 (.J,1 &7.1/(L I(IJ )-L',(JI)

515 ';o T:] 54-
5'r 51 ;7 -.Y ( 1 .J)z(K (J , I 4-1g(I,,J) Q-L3 1,j) 7 ) LB I J

525 G"' TO
539 53;ý Dy(I,J): t¼.'535 5 1.ý )Y (,I, :): y(I,J)
5-4 I F( i,' --". ;" I ) r,) ) .-v
5.15 IF (L3L,'., .. ) .- 5 r 13
55,-', ")Y(QK, L) M; • L) ( (,'v) * ) (L 3 L. .. *'-*7)) C - - "3LU,
555 30 T) 5'16
5Cf 543 )YM ,L): Kq L, I'( ,L * F %':" Z )F(''
5ý) 5 5• 4 f Y :v L, K v K,1.
57;' L.3 ,L) :: ( ) %
575 LJ;(L,K):L3LK
5r2; 517 CALL 2*{Di;F 2:T d
5 " 5 1 R ' ,- : P"/.- ,

5¶)i )5 " ) ) 55 1:l, 'l: Ic:ob-
595 )D 5D5 ,J:I 1,J

Ci 5 J( "1): Y (I,_I)
G1 I (i (v J , ). 'I. (J,1)) I ' Ti 555
$15 ! L ( Iy( , J) L .L ,J)) QI TI
'2:" L•I_ ,J)z -AY:(r'V(I,9J ," .,I,) )

,S55 1-ýE 1
64' 555 %*'.'

5: 17) 5 "S I I.GS;; DD. 5St 1 ,

GG5 56f C(i) :CY(I J)6r1F l•- "* ,I--l&'-

S75 C AL L I [-: ) • -.r -, Ir ", )

7;99 T",\I 111+

7.;)" I)P ::I P I 1GP,) C^"LL '*/I[• r , -r-nr IP : )
6');' C C9 T U^, .'•LAT I 1',%":

7;' +:, 7 ( !' :" : h f

7f 5 ) 5,, j I I,
71 V1' 4 I~( -( ,J) . -, . l~~)-, q r' ,,
71 7; A : (J I)I " 1 ,J) ( ", , ) * J),
7,., IF (L3(J, r ) * ,, ) '" r
72. :LL: Iy ,J) CFY (I , W )-.:. I (J,)) "'2(,l, I 4'.2 ,ý J) (:i•(i, , ' ,, )

73-) r 7 7L!- ) l J) FY l, ) I

14,t, G6 r 4 ,A ):TA¢'K!-)AA
74S iL( L,) : "+Z-L.751 :) (.J, I ):7!iA--LL
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755 IF (ERR.GE.DX(J,I)) GO TO 65!
76 f ERR"DX(J ,I)" KE(NE):I LE( NE):J
765 F(ANE) :FY(I ,J)
77f 655 CONJTINUE
775 IF(II.NE.1) GO TO 67r!
78 P PRINT,ERR,ZAC E),ZL(NE)
785 PRINT,"VALUE OF ERROR PERMITTED E Co
79f INPUT,EP
795 ZB:Z A(I)
8!IM 670 IF(ZA(CE).GT.Z3)GO TO G68
8C5 ZzZA(NE):N3-Nw :ZC:ZB-EP
?I P PRINJT 32,,3,Z3
.315 GE-0 IF(NE.EQ.I1) 11:11+1
! f PRINT 34,NE,ZA(NE),ZL(NP)

825 IF(NE. NE. JF) 3O TO 5rC
8Z3 i D.J 74e I I: ,11
935 IF (S(0).EQ.!) 3O TO 704

84V IF (ZL(I).GZ.7C) S(I):Z
5345 7F, , C 3 ýJTIr NU 7

95iC CHECKING FOR TERNIINATION
355 CHEC:t
Me6 Do 'Ile 1=1,11
865 71r IF(3(I).Er.7) CHEC:CHEC+I
37f, IF (CHEC.EQ.II) GO TO 75t,

875 ZLI:ZL(1)
89r, DO 720 1:1,11
885 IF((I).EQ.r) GO ro 72e

899 IF(ZL(1).GT.ZLI) GO TO 72r,
895 ZLI:ZL(1); 'JF:I
9t P 72fl C3JTI'IJUE
905 GO TO 4ME
91t 75f PRINT,"LFAST COST 3OLUTI'M'J:",73,"ERROR PEFRIITEO:" ,EP

915 PRIN4T,"NJ'13ER OF EVALUATIOJ ",NUI
92 M IP =2. ( 'J3- I V* P+ %P+ 1

925 CALL UREAD (SDiTAO,IP,VP)
93P PRI':T,"FR0MO,'T ,rO,FLOW"
935 DO 755 1I, U
946 3 J :IiNT( I-) /N) +1
945 I= 1, *W (Jd-I )
950 755 CYtI,J):Cl(MI)
955 Do 7.F,, : , i I :+
96 F D . 7 9 , J =l I, V

965 IF(R(I,J).E).r) GO TO 781

97r PRINT 2!, I,J,R(I,J)
975 JYc I
991. 760 LO:CY(VY,J)
985 IF (LO.EO.J) '0 TO 7q
99! PRIVT 3f, LO ; NY:LO
995 GO fO 76!
100C 78C CONTINUE
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I EP 5 STOP ;END
10!0 SUBROUTINE SHORTCST
1915 COMMNON DY,DX,FY,R,CY,CX,N,NE,1(,L
I r2C REAL DY(35,35),DX(35,35)
I1r2 5 INTEGER N, NE,CY(35 35),CX(35,35),Fy( 35,35),R (35,35)
I f3 c N I N- 1
10l35 DO 8z5g I:L,N Re
lt4t DO 950 ~j=I, N 6 eesft r t~eedI

105C DO 862 71:, = c'
10~55 DO0 862 1:=1 ,NI II =I :+ I
I CGF IF(DY(II.1 .P~ GO TO 852
1!65 DO 9G6) J=I1,N
11)7C 1 FCDY (IJ ) .LE.( DY ( I .1)+DY (11,J) GO TO ý3S
1r,~75 DYC(I ,J )=D-Y(1 , )+DY ( MJ)

1085 DYIJ=Y(,) Y(J,I):CYCIJ)

Ir,9! F 6f) CONTINUE
1fl95 862 C3NTINUE
lift IFCNE.EQ.0j) RETURYN

1115 F7F FY(I,,J)=(P

1125 DO 1WP J=I I, N
113C IFCR(I,J).EO(.r,) GO0 TO 9r,?,
1135 NX=R(I,J) :,NY:I
114r! 88C LO:CY(NY,,I)
1145 IF(NY.GT.LO) GO TO 995
11 50 PY(NY(,LO)=Y( NY ,LOv)+NX
1155 GO TO S9?,
1160 8H5 FY(LO,A4Y):FY(L-O,NY)+NX
1165 990 IF(LO.EQ.J) GO TO 9!!
1171) NY=LO
1175 GO TO 988!
119f 9!! CONTINUE
1195 ROTURN
119t END
1195 SUBROUJTINE ARCHA'NGE
12 F) F CONI710-4 DY,rIX,FY,R,CY,CX,N,?JE,K,!
12F5 REAL ')Y(35,35) D:xC35,35)
121f) INTEGER N,K ,L,CY(35,35) ,CX(35,35) ,FY(35,35) ,R(35,35)
I1e215 Vl =N- 1
1220 D0 920 1:=1I, NI : II 1+ I
12-25 Do 92f J :11, N
1230 AD=DY( I,K)+DX(K ,L)Yt)Y(L,J))
1235 1IF (DY I J ).LE. AD) GO TO0 91 M
1240 DXCI,J):AD;,CX(I,,J):CY(I ,K):.CXCJ,I):CY(J,L)
1245 IF(I.DQ.K) CX(I,J):L
1250 IF(j.EQ.L) CXCJ,I):K
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1255 GO TO 92912G 1 91CD AD=DYCItL)+,DX(KqL).t.DY(KtJ)
1265 IF(DY(I,j).LE. AD) GO TJ 915
127e DX(I,J)=AD;Cx(I,J):Cy(],L);CX(J,I)=Cy(j,K)
1275 IF(I.EQ.L) CX(I,J):K
12- S IF(J.EQ.K) CX(,),I)=L

128S5 GO TO 92V129F, 915 CX(I,J)::CY(I,J)-, Cý'(J,I):Cy(JI):, DX(l,J)=DyCI,J)
1295 92f CONTINUE
13r,5 DO 93 J 1:1,NI ;II:I+e
13e5 DO 93 P J:I1, N+
131r 930) FY(I,J):uc
1315 03 99P, I=:1,I :11:1+1 00
132t) DO 93r, J:=1,N
1325 IF(R(I,J).EQ.r) GO TO 9)81338 1! X=R ( I ,J) -NY= I
1335 94 t LO-CXCNY,J)
134 r IF(NY.GT.LO) GO TO 951
1345 Fy(NY ,L 0) =FYC 'JY,LO)+'VX
135t GO TO 96r,
1355 950 FY(LO, NY):y(LO,NY).\lX
136F cM IF(LO.EQ.j) GO TO fl
1365 NYY:LO
137e GO Tj 34S
1375 9g9 DY(I,J):DX(I,J)
138t DO 985 1:1,%
1385 DO) 995 J:,1
1391C CY (I ,J )::C' (I ,J )
1395 995 IF (I.LT.J) DY(J,I):EDY(I,J)
14F RETUR1N
14r5 END

THE COMPUTATIONAL RESULT OF A NUMBER OF PROBLE MS

LS LISTED INTTTE TABLE OF NEXT PAGE.
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APPENDIX C

The solution procedures considered for this problem always use

continuous functions and continuous variables. However, except for the

solution method, this assumption of continuity of the cost function is

not needed. The values of the cost function at integral points are

enough data to get the total cost. If the requirements (r ij) are

integers, then the following observation shows that all the extreme points

(one of which is found at each iteration of our procedures) of the convex

polyhedron are al-u integral.

The problem is:

M

Mininize Z = m(Ym
m=m

subject to x > rj (i j pairs) and x . , where

Aii = ij 32

all i,jli>j -j '

This is equivalent to:

M
Minimize Z(X W fm(j ji> amX,_)

subject to DX > R , x.k > 0, where am, is the mthi coIuTni oF the= _ = ii

matrix Aij and D is a j P iJ n mitrix (n the number of

source-sink pairs) with P.. l's in each row and R {r.. 1 , an

n-vector. Now,

"]1111

Il]

D = 111
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is a totally unimodular matrix.I

The theorem of Hoffman and Kruskal [Page 125, Ref. H-3] proves that

if the vector R is integral then all the extzeme points of the

polyhedron defined by the constraints are integral.

'Definition: A matrix is said to, be totally unimodular if and only if
every subdeterminant of D Ls ceual to +1 , -1 , or 0
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APPENDIX D

The property of concave nondecreasing functions established below is

used in Chapter 3.

Theorem:

Let f(y) be: (i) a concave function in y E [0,a] , (ii) f(y) ' 0

(i.e., it is bounded below) and (iii) nondecreasing in y , then

(a) f(y) is continuou; (except perhaps at 0) . If it is not

nondecreasing, then it is not necessarily continuous at point

a

(b) Both the left hand and the right hand derivatives D f and

D +f exist at all points (except at 0 where D-f is not

defined and D+f may not be finite; and at a where D +f is

not defined).

(c) The following inequalities are true:

(M) D f(y 1 ) > D f(y 2 ) V y 2 > y1

(ii) D f(yl) I D f(y 2 ) V Y 2 > Yl

(iii) D-f(y) D> +f(y) V y C (0,a)

Proof:

This proof has been done by Hardy, Polya and Littlewood [Page 91,

Ref. H-2] for any convex function defined in the open interval (11,K)

1
which is bounded above in some iioterval i interior to (H,K) . If

IThe inequalities (i), (ii) and (ift) are the reverse of the inequalities

in the theorem of Hardy, Po]ya ad Littlewood because they are for convex

functions.
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f(y) is a concave function, -f(y) is convex. Condition (ii.) guarantees

a lower bound for the concave function which is equivalent to the upper

bound of the convex function -f(y) . Here (HI,K) = (O,a) . So, the

proof is exactly similar. ConditLon (iii) guarantees that at a there

cannot be a discontinuity because then the value of f would have to

decrease.

Thus, this theorem is valid for a piecewise linear concave function

(a continuous version of the function as shown in Figure 1.5).

_ =
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